Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
License: APACHE
/-
Copyright (c) 2019 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import algebra.category.CommRing.basic
import topology.category.Top.basic
import topology.instances.complex
universes u
open category_theory
/-- A bundled topological commutative ring. -/
structure TopCommRing :=
(α : Type u)
[is_comm_ring : comm_ring α]
[is_topological_space : topological_space α]
[is_topological_ring : topological_ring α]
namespace TopCommRing
instance : has_coe_to_sort TopCommRing :=
{ S := Type u, coe := TopCommRing.α }
attribute [instance] is_comm_ring is_topological_space is_topological_ring
instance : concrete_category TopCommRing.{u} :=
{ to_category :=
{ hom := λ R S, {f : R →+* S // continuous f },
id := λ R, ⟨ring_hom.id R, by obviously⟩, -- TODO remove obviously?
comp := λ R S T f g, ⟨g.val.comp f.val,
begin -- TODO automate
cases f, cases g,
dsimp, apply continuous.comp ; assumption
end⟩ },
forget := { obj := λ R, R, map := λ R S f, f.val },
forget_faithful := { }
}
/-- Construct a bundled `TopCommRing` from the underlying type and the appropriate typeclasses. -/
def of (X : Type u) [comm_ring X] [topological_space X] [topological_ring X] : TopCommRing := ⟨X⟩
noncomputable example : TopCommRing := TopCommRing.of ℚ
noncomputable example : TopCommRing := TopCommRing.of ℝ
noncomputable example : TopCommRing := TopCommRing.of ℂ
instance forget_topological_space (R : TopCommRing) :
topological_space ((forget TopCommRing).obj R) :=
R.is_topological_space
instance forget_comm_ring (R : TopCommRing) :
comm_ring ((forget TopCommRing).obj R) :=
R.is_comm_ring
instance forget_topological_ring (R : TopCommRing) :
topological_ring ((forget TopCommRing).obj R) :=
R.is_topological_ring
instance has_forget_to_CommRing : has_forget₂ TopCommRing CommRing :=
has_forget₂.mk'
(λ R, CommRing.of R)
(λ x, rfl)
(λ R S f, f.val)
(λ R S f, heq.rfl)
instance forget_to_CommRing_topological_space (R : TopCommRing) :
topological_space ((forget₂ TopCommRing CommRing).obj R) :=
R.is_topological_space
/-- The forgetful functor to Top. -/
instance has_forget_to_Top : has_forget₂ TopCommRing Top :=
has_forget₂.mk'
(λ R, Top.of R)
(λ x, rfl)
(λ R S f, ⟨⇑f.1, f.2⟩)
(λ R S f, heq.rfl)
instance forget_to_Top_comm_ring (R : TopCommRing) :
comm_ring ((forget₂ TopCommRing Top).obj R) :=
R.is_comm_ring
instance forget_to_Top_topological_ring (R : TopCommRing) :
topological_ring ((forget₂ TopCommRing Top).obj R) :=
R.is_topological_ring
end TopCommRing