Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18536License: APACHE
/- Copyright (c) 2019 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import algebra.category.CommRing.basic import topology.category.Top.basic import topology.instances.complex universes u open category_theory /-- A bundled topological commutative ring. -/ structure TopCommRing := (α : Type u) [is_comm_ring : comm_ring α] [is_topological_space : topological_space α] [is_topological_ring : topological_ring α] namespace TopCommRing instance : has_coe_to_sort TopCommRing := { S := Type u, coe := TopCommRing.α } attribute [instance] is_comm_ring is_topological_space is_topological_ring instance : concrete_category TopCommRing.{u} := { to_category := { hom := λ R S, {f : R →+* S // continuous f }, id := λ R, ⟨ring_hom.id R, by obviously⟩, -- TODO remove obviously? comp := λ R S T f g, ⟨g.val.comp f.val, begin -- TODO automate cases f, cases g, dsimp, apply continuous.comp ; assumption end⟩ }, forget := { obj := λ R, R, map := λ R S f, f.val }, forget_faithful := { } } /-- Construct a bundled `TopCommRing` from the underlying type and the appropriate typeclasses. -/ def of (X : Type u) [comm_ring X] [topological_space X] [topological_ring X] : TopCommRing := ⟨X⟩ noncomputable example : TopCommRing := TopCommRing.of ℚ noncomputable example : TopCommRing := TopCommRing.of ℝ noncomputable example : TopCommRing := TopCommRing.of ℂ instance forget_topological_space (R : TopCommRing) : topological_space ((forget TopCommRing).obj R) := R.is_topological_space instance forget_comm_ring (R : TopCommRing) : comm_ring ((forget TopCommRing).obj R) := R.is_comm_ring instance forget_topological_ring (R : TopCommRing) : topological_ring ((forget TopCommRing).obj R) := R.is_topological_ring instance has_forget_to_CommRing : has_forget₂ TopCommRing CommRing := has_forget₂.mk' (λ R, CommRing.of R) (λ x, rfl) (λ R S f, f.val) (λ R S f, heq.rfl) instance forget_to_CommRing_topological_space (R : TopCommRing) : topological_space ((forget₂ TopCommRing CommRing).obj R) := R.is_topological_space /-- The forgetful functor to Top. -/ instance has_forget_to_Top : has_forget₂ TopCommRing Top := has_forget₂.mk' (λ R, Top.of R) (λ x, rfl) (λ R S f, ⟨⇑f.1, f.2⟩) (λ R S f, heq.rfl) instance forget_to_Top_comm_ring (R : TopCommRing) : comm_ring ((forget₂ TopCommRing Top).obj R) := R.is_comm_ring instance forget_to_Top_topological_ring (R : TopCommRing) : topological_ring ((forget₂ TopCommRing Top).obj R) := R.is_topological_ring end TopCommRing