Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Path: Maths_Challenges / _target / deps / mathlib / src / topology / sheaves / presheaf_of_functions.lean
Views: 18536License: APACHE
/- Copyright (c) 2019 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import topology.sheaves.presheaf import topology.category.TopCommRing import category_theory.yoneda import ring_theory.subring import topology.algebra.continuous_functions universes v u open category_theory open topological_space open opposite namespace Top variables (X : Top.{v}) /-- The presheaf of continuous functions on `X` with values in fixed target topological space `T`. -/ def presheaf_to_Top (T : Top.{v}) : X.presheaf (Type v) := (opens.to_Top X).op ⋙ (yoneda.obj T) /-- The (bundled) commutative ring of continuous functions from a topological space to a topological commutative ring, with pointwise multiplication. -/ -- TODO upgrade the result to TopCommRing? def continuous_functions (X : Top.{v}ᵒᵖ) (R : TopCommRing.{v}) : CommRing.{v} := { α := unop X ⟶ (forget₂ TopCommRing Top).obj R, str := _root_.continuous_comm_ring } namespace continuous_functions @[simp] lemma one (X : Top.{v}ᵒᵖ) (R : TopCommRing.{v}) (x) : (monoid.one ↥(continuous_functions X R)).val x = 1 := rfl @[simp] lemma zero (X : Top.{v}ᵒᵖ) (R : TopCommRing.{v}) (x) : (comm_ring.zero ↥(continuous_functions X R)).val x = 0 := rfl @[simp] lemma add (X : Top.{v}ᵒᵖ) (R : TopCommRing.{v}) (f g : continuous_functions X R) (x) : (comm_ring.add f g).val x = f.1 x + g.1 x := rfl @[simp] lemma mul (X : Top.{v}ᵒᵖ) (R : TopCommRing.{v}) (f g : continuous_functions X R) (x) : (ring.mul f g).val x = f.1 x * g.1 x := rfl /-- Pulling back functions into a topological ring along a continuous map is a ring homomorphism. -/ def pullback {X Y : Topᵒᵖ} (f : X ⟶ Y) (R : TopCommRing) : continuous_functions X R ⟶ continuous_functions Y R := { to_fun := λ g, f.unop ≫ g, map_one' := rfl, map_zero' := rfl, map_add' := by tidy, map_mul' := by tidy } local attribute [ext] subtype.eq /-- A homomorphism of topological rings can be postcomposed with functions from a source space `X`; this is a ring homomorphism (with respect to the pointwise ring operations on functions). -/ def map (X : Topᵒᵖ) {R S : TopCommRing} (φ : R ⟶ S) : continuous_functions X R ⟶ continuous_functions X S := { to_fun := λ g, g ≫ ((forget₂ TopCommRing Top).map φ), map_one' := by ext; exact φ.1.map_one, map_zero' := by ext; exact φ.1.map_zero, map_add' := by intros; ext; apply φ.1.map_add, map_mul' := by intros; ext; apply φ.1.map_mul } end continuous_functions /-- An upgraded version of the Yoneda embedding, observing that the continuous maps from `X : Top` to `R : TopCommRing` form a commutative ring, functorial in both `X` and `R`. -/ def CommRing_yoneda : TopCommRing.{u} ⥤ (Top.{u}ᵒᵖ ⥤ CommRing.{u}) := { obj := λ R, { obj := λ X, continuous_functions X R, map := λ X Y f, continuous_functions.pullback f R }, map := λ R S φ, { app := λ X, continuous_functions.map X φ } } /-- The presheaf (of commutative rings), consisting of functions on an open set `U ⊆ X` with values in some topological commutative ring `T`. -/ def presheaf_to_TopCommRing (T : TopCommRing.{v}) : X.presheaf CommRing.{v} := (opens.to_Top X).op ⋙ (CommRing_yoneda.obj T) /-- The presheaf (of commutative rings) of real valued functions. -/ noncomputable def presheaf_ℝ (Y : Top) : Y.presheaf CommRing := presheaf_to_TopCommRing Y (TopCommRing.of ℝ) /-- The presheaf (of commutative rings) of complex valued functions. -/ noncomputable def presheaf_ℂ (Y : Top) : Y.presheaf CommRing := presheaf_to_TopCommRing Y (TopCommRing.of ℂ) end Top