CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".

Project: Xena
Views: 18536
License: APACHE
/-
Copyright (c) 2019 Patrick Massot. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot

Indexed product of uniform spaces
-/

import topology.uniform_space.cauchy
import topology.uniform_space.separation
noncomputable theory

open_locale uniformity topological_space

section
open filter lattice uniform_space
universe u
variables {ι : Type*} (α : ι → Type u) [U : Πi, uniform_space (α i)]
include U

instance Pi.uniform_space : uniform_space (Πi, α i) :=
uniform_space.of_core_eq
  (⨅i, uniform_space.comap (λ a : Πi, α i, a i) (U i)).to_core
  Pi.topological_space $ eq.symm to_topological_space_infi

lemma Pi.uniformity :
  𝓤 (Π i, α i) = ⨅ i : ι, filter.comap (λ a, (a.1 i, a.2 i)) $ 𝓤 (α i) :=
infi_uniformity

lemma Pi.uniform_continuous_proj (i : ι) : uniform_continuous (λ (a : Π (i : ι), α i), a i) :=
begin
  rw uniform_continuous_iff,
  exact infi_le (λ j, uniform_space.comap (λ (a : Π (i : ι), α i), a j) (U j)) i
end

instance Pi.complete [∀ i, complete_space (α i)] : complete_space (Π i, α i) :=
⟨begin
  intros f hf,
  have : ∀ i, ∃ x : α i, filter.map (λ a : Πi, α i, a i) f ≤ 𝓝 x,
  { intro i,
    have key : cauchy (map (λ (a : Π (i : ι), α i), a i) f),
      from cauchy_map (Pi.uniform_continuous_proj α i) hf,
    exact (cauchy_iff_exists_le_nhds $ map_ne_bot hf.1).1 key },
  choose x hx using this,
  use x,
  rw [nhds_pi, le_infi_iff],
  exact λ i, map_le_iff_le_comap.mp (hx i),
end⟩

instance Pi.separated [∀ i, separated (α i)] : separated (Π i, α i) :=
separated_def.2 $ assume x y H,
begin
  ext i,
  apply eq_of_separated_of_uniform_continuous (Pi.uniform_continuous_proj α i),
  apply H,
end
end