Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18536License: APACHE
/- Copyright (c) 2019 Patrick Massot. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Massot Indexed product of uniform spaces -/ import topology.uniform_space.cauchy import topology.uniform_space.separation noncomputable theory open_locale uniformity topological_space section open filter lattice uniform_space universe u variables {ι : Type*} (α : ι → Type u) [U : Πi, uniform_space (α i)] include U instance Pi.uniform_space : uniform_space (Πi, α i) := uniform_space.of_core_eq (⨅i, uniform_space.comap (λ a : Πi, α i, a i) (U i)).to_core Pi.topological_space $ eq.symm to_topological_space_infi lemma Pi.uniformity : 𝓤 (Π i, α i) = ⨅ i : ι, filter.comap (λ a, (a.1 i, a.2 i)) $ 𝓤 (α i) := infi_uniformity lemma Pi.uniform_continuous_proj (i : ι) : uniform_continuous (λ (a : Π (i : ι), α i), a i) := begin rw uniform_continuous_iff, exact infi_le (λ j, uniform_space.comap (λ (a : Π (i : ι), α i), a j) (U j)) i end instance Pi.complete [∀ i, complete_space (α i)] : complete_space (Π i, α i) := ⟨begin intros f hf, have : ∀ i, ∃ x : α i, filter.map (λ a : Πi, α i, a i) f ≤ 𝓝 x, { intro i, have key : cauchy (map (λ (a : Π (i : ι), α i), a i) f), from cauchy_map (Pi.uniform_continuous_proj α i) hf, exact (cauchy_iff_exists_le_nhds $ map_ne_bot hf.1).1 key }, choose x hx using this, use x, rw [nhds_pi, le_infi_iff], exact λ i, map_le_iff_le_comap.mp (hx i), end⟩ instance Pi.separated [∀ i, separated (α i)] : separated (Π i, α i) := separated_def.2 $ assume x y H, begin ext i, apply eq_of_separated_of_uniform_continuous (Pi.uniform_continuous_proj α i), apply H, end end