Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
License: APACHE
import tactic.apply
import topology.instances.real
-- algebra.pi_instances
example : ∀ n m : ℕ, n + m = m + n :=
begin
apply' nat.rec,
-- refine nat.rec _ _,
admit, admit
end
instance : partial_order unit :=
{ le := λ _ _, ∀ (x : ℕ), x = x,
lt := λ _ _, false,
le_refl := λ _ _, rfl,
le_trans := λ _ _ _ _ _ _, rfl,
lt_iff_le_not_le := λ _ _, by simp,
le_antisymm := λ ⟨⟩ ⟨⟩ _ _, rfl }
example : unit.star ≤ unit.star :=
begin
apply' le_trans,
-- refine le_trans _ _,
-- exact unit.star,
refl', refl'
-- refine le_refl _, refine le_refl _,
end
example {α β : Type*} [partial_order β] (x y z : α → β) (h₀ : x ≤ y) (h₁ : y ≤ z) : x ≤ z :=
begin
transitivity'; assumption
end
example : continuous (λ (x : ℝ), x + x) :=
begin
apply' continuous.add,
guard_target' continuous (λ (x : ℝ), x), admit,
guard_target' continuous (λ (x : ℝ), x), admit,
-- guard_target' topological_add_monoid ℝ, admit,
end