Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18536License: APACHE
import tactic.apply import topology.instances.real -- algebra.pi_instances example : ∀ n m : ℕ, n + m = m + n := begin apply' nat.rec, -- refine nat.rec _ _, admit, admit end instance : partial_order unit := { le := λ _ _, ∀ (x : ℕ), x = x, lt := λ _ _, false, le_refl := λ _ _, rfl, le_trans := λ _ _ _ _ _ _, rfl, lt_iff_le_not_le := λ _ _, by simp, le_antisymm := λ ⟨⟩ ⟨⟩ _ _, rfl } example : unit.star ≤ unit.star := begin apply' le_trans, -- refine le_trans _ _, -- exact unit.star, refl', refl' -- refine le_refl _, refine le_refl _, end example {α β : Type*} [partial_order β] (x y z : α → β) (h₀ : x ≤ y) (h₁ : y ≤ z) : x ≤ z := begin transitivity'; assumption end example : continuous (λ (x : ℝ), x + x) := begin apply' continuous.add, guard_target' continuous (λ (x : ℝ), x), admit, guard_target' continuous (λ (x : ℝ), x), admit, -- guard_target' topological_add_monoid ℝ, admit, end