Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18536License: APACHE
/- Copyright (c) 2016 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad Examples to test finish. (The designations "clarify," "safe," "iauto," etc. are from a previous tableau prover.) -/ import tactic.finish open auto section variables A B C D : Prop /- clarify -/ example (H : ¬ A) (H' : A) : C := by finish example (H₁ : A ∧ A ∧ B) (H₂ : A ∧ C ∧ B) : A := by finish /- safe -/ example (H : A) (H₁ : ¬ B) : ¬ (A → B) := by finish example : A ∨ B → B ∨ A := by finish example : A ∧ B → B ∧ A := by finish example (H : A) (H₁ : A → B) (H₂ : B → C) : C := by finish example (H₁ : A ∧ B) (H₂ : C ∧ B) : C := by finish example (HA : A) (HB : B) (HC : C) (HD : D) : (A ∧ B) ∧ (C ∧ D) := by finish example (H₁ : A ∧ B) (H₂ : B ∧ ¬ C) : A ∨ C := by finish example : (A → B) ∧ (B → C) → A → C := by finish example : (A → B) ∨ (B → A) := by finish example : ((A → B) → A) → A := by finish /- iauto -/ example (H : A) (H₁ : ¬ B) : ¬ (A → B) := by finish example : ¬ (A ↔ ¬ A) := by finish example (H : A ↔ B) (H₁ : A ∧ B → C) (H₂ : ¬ A ∧ ¬ B → C) : C := by finish example (H : A ↔ B) (H₁ : (A ∧ ¬ B) ∨ (¬ A ∧ B)) : C := by finish example (H : A → B) (H₁ : A) : B := by finish example (H : A → B) (H₁ : B → C) : A → C := by finish example (H : A → B ∨ C) (H₁ : B → D) (H₂ : C → D) : A → D := by finish example : A ∨ B → B ∨ A := by finish /- using injectivity -/ section open nat example (x y : ℕ) : succ x = succ y → x = y ∨ x = succ y := by finish example (x y z : ℕ) : succ (succ x) = succ y ∧ y = succ z → y = succ x ∧ succ x = succ z := by finish end /- -- Examples with quantifiers -/ section variables (X : Type) (P Q R : X → Prop) (T : X → X → Prop) (a b : X) /- auto -/ example (H : ∀ x, P x → Q x) (H₁ : ∀ x, P x) : Q a := by finish example (H : ∀ x, P x → Q x) (H₁ : P a) : Q a := by finish /- iauto -/ example (H₁ : P a) (H₂ : P b) : ∃ x, P x := by finish example (H₁ : P a) (H₂ : P b) (H₃ : Q b) : ∃ x, P x ∧ Q x := by finish example (H₁ : P b) (H₂ : Q b) (H₃ : P a) : ∃ x, P x ∧ Q x := by finish example (H : ∀ x, P x → Q x ∧ R x) (a : X) (H₁ : P a) : R a ∧ Q a := by finish example (H : ∃ x, P x ∧ Q x) : ∃ x, Q x ∧ P x := by finish -- not valid in dependent type theory! -- example : ∃ x, ((∃ y, P y) → P x) := -- by auto' /- Beyond the scope of finish. example (H : ∃ x : X, x = x) : ∃ x, ((∃ y, P y) → P x) := by finish example : (∃ x, ∀ y, T x y) → ∀ y, ∃ x, T x y := by finish -/ end example (x y z : ℕ) (p : ℕ → Prop) (h₀ : x = y) (h₁ : y = z) (h₂ : ∀ w, w = z → p w) : p x := by finish end /- more examples -/ constant foo : Prop axiom not_foo : ¬ foo section variables a b c d : Prop example : a ∧ b → a := by finish example : a → (a → b) → (b → c) ∧ (d → ¬ c) → ¬ d := by finish example : a ∨ b → b ∨ a := by finish example : ¬ (a ↔ ¬ a) := begin finish end /- examples of tactics that leave goals -/ /- example : a ∨ b ∨ foo → b ∨ a := begin clarify, admit end example : a ∨ b ∨ foo ∨ foo → b ∨ a := begin safe, admit end example : a ∨ b ∨ c → ¬ a → ¬ b → d := begin safe, admit end -/ end section variables (a b c : ℕ) (p q : ℕ → Prop) (r : ℕ → ℕ → Prop) variables (P Q R : Prop) variable (g : bool → nat) example (h₁ : ∀ x, p x → q x) (h₂ : ∀ x, p x) : q a := by finish example (h₁ : p a) : ∃ x, p x := by finish example (h₁ : p a) (h₂ : p b) (h₃ : q b) : ∃ x, p x ∧ q x := by finish example (h : ∃ x, p x ∧ r x x) (h' : ∀ x, r x x → q x) : ∃ x, p x ∧ q x := by finish example (h : ∃ x, q x ∧ p x) : ∃ x, p x ∧ q x := by finish example (h₁ : ∀ x, q x → p x) (h₃ : q a) : ∃ x, p x := by finish example (h₁ : ∀ x, p x → q x → false) (h₂ : p a) (h₃ : p b) (h₄ : q b) : false := by finish example (h : ∀ x, p x) (h₁ : ∀ x, p x → q x) : ∀ x, q x := by finish example (h : ∃ x, p x) (h₁ : ∀ x, p x → q x) : ∃ x, q x := by finish example (h : ¬ ∀ x, ¬ p x) (h₁ : ∀ x, p x → q x) (h₂ : ∀ x, ¬ q x) : false := by finish /- example (h : p a) (h' : p a → false) : false := by finish -/ end section variables a b c d : Prop variables (p q : ℕ → Prop) (r : ℕ → ℕ → Prop) example (h₁ : ¬ (a → b ∨ c)) (h₂ : ¬ (b ∨ ¬ c)) : true := begin normalize_hyps {classical := false}, trivial end example (h : ¬ ∀ x, (∃ y, r x y) → p x) : true := begin normalize_hyps {}, trivial end example (h₁ : a → b ∨ c) (h₂ : ¬ b) : a → c := begin simp * at *, assumption end end