CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".

Project: Xena
Views: 18536
License: APACHE
/-
Copyright (c) 2016 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Nathaniel Thomas

More examples to test automation, stolen shamelessly by Jeremy from Nathaniel's "tauto".
-/
import tactic.finish
open nat

section

variables (a b c d e f : Prop)
variable even : ℕ → Prop
variable P : ℕ → Prop

-- these next five are things that tauto doesn't get

example : (∀ x, P x) ∧ b → (∀ y, P y) ∧ P 0 ∨ b ∧ P 0 := by finish
example : (∀ A, A ∨ ¬A) → ∀ x y : ℕ, x = y ∨ x ≠ y := by finish
example : ∀ b1 b2, b1 = b2 ↔ (b1 = tt ↔ b2 = tt) := begin intro b1, cases b1; finish [iff_def] end

example : ∀ (P Q : nat → Prop), (∀ n, Q n → P n) → (∀ n, Q n) → P 2 := by finish
example (a b c : Prop) : ¬ true ∨ false ∨ b ↔ b := by finish

example : true := by finish

example : false → a := by finish
example : a → a := by finish
example : (a → b) → a → b := by finish
example : ¬ a → ¬ a := by finish
example : a → (false ∨ a) := by finish
example : (a → b → c) → (a → b) → a → c := by finish
example : a → ¬ a → (a → b) → (a ∨ b) → (a ∧ b) → a → false := by finish
example : ((a ∧ b) ∧ c) → b := by finish
example : ((a → b) → c) → b → c := by finish
example : (a ∨ b) → (b ∨ a) := by finish
example : (a → b ∧ c) → (a → b) ∨ (a → c) := by finish
example : ∀ (x0 : a ∨ b) (x1 : b ∧ c), a → b := by finish
example : a → b → (c ∨ b) := by finish
example : (a ∧ b → c) → b → a → c := by finish
example : (a ∨ b → c) → a → c := by finish
example : (a ∨ b → c) → b → c := by finish
example : (a ∧ b) → (b ∧ a) := by finish
example : (a ↔ b) → a → b := by finish
example : a → ¬¬a := by finish
example : ¬¬(a ∨ ¬a) := by finish
example : ¬¬(a ∨ b → a ∨ b) := by finish
example : ¬¬((∀ n, even n) ∨ ¬(∀ m, even m)) := by finish
example : (¬¬b → b) → (a → b) → ¬¬a → b := by finish
example : (¬¬b → b) → (¬b → ¬ a) → ¬¬a → b := by finish

example : ((a → b → false) → false) → (b → false) → false := by finish

example : ((((c → false) → a) → ((b → false) → a) → false) → false) →
            (((c → b → false) → false) → false) → ¬a → a := by finish

example (p q r : Prop) (a b : nat) : true → a = a → q → q → p → p := by finish
example : ∀ (F F' : Prop), F ∧ F' → F := by finish
example : ∀ (F1 F2 F3 : Prop), ((¬F1 ∧ F3) ∨ (F2 ∧ ¬F3)) → (F2 → F1) → (F2 → F3) →  ¬F2 := by finish
example : ∀ (f : nat → Prop), f 2 → ∃ x, f x := by finish
example : true ∧ true ∧ true ∧ true ∧ true ∧ true ∧ true := by finish
example : ∀ (P : nat → Prop), P 0 → (P 0 → P 1) → (P 1 → P 2) → (P 2) := by finish
example : ¬¬¬¬¬a → ¬¬¬¬¬¬¬¬a → false := by finish
example : ∀ n, ¬¬(even n ∨ ¬even n) := by finish
example : ∀ (p q r s : Prop) (a b : nat), r ∨ s → p ∨ q → a = b → q ∨ p := by finish
example : (∀ x, P x) → (∀ y, P y) := by finish

/- TODO(Jeremy): reinstate after simp * at * bug is fixed.
example : ((a ↔ b) → (b ↔ c)) → ((b ↔ c) → (c ↔ a)) → ((c ↔ a) → (a ↔ b)) → (a ↔ b) :=
by finish [iff_def]
-/

example : ((¬a ∨ b) ∧ (¬b ∨ b) ∧ (¬a ∨ ¬b) ∧ (¬b ∨ ¬b) → false) → ¬((a → b) → b) → false := by finish

example : ¬((a → b) → b) → ((¬b ∨ ¬b) ∧ (¬b ∨ ¬a) ∧ (b ∨ ¬b) ∧ (b ∨ ¬a) → false) → false := by finish
example : (¬a ↔ b) → (¬b ↔ a) → (¬¬a ↔ a) := by finish

example : (¬ a ↔ b) → (¬ (c ∨ e) ↔ d ∧ f) → (¬ (c ∨ a ∨ e) ↔ d ∧ b ∧ f) := by finish

example {A : Type} (p q : A → Prop) (a b : A) : q a → p b → ∃ x, (p x ∧ x = b) ∨ q x := by finish

example {A : Type} (p q : A → Prop) (a b : A) : p b → ∃ x, q x ∨ (p x ∧ x = b) := by finish

example : ¬ a → b → a → c := by finish
example : a → b → b → ¬ a → c := by finish
example (a b : nat) : a = b → b = a := by finish

-- good examples of things we don't get, even using the simplifier
example (a b c : nat) : a = b → a = c → b = c := by finish
example (p : nat → Prop) (a b c : nat) : a = b → a = c → p b → p c := by finish

example (p : Prop) (a b : nat) : a = b → p → p := by finish

-- safe should look for contradictions with constructors
example (a : nat) : (0 : ℕ) = succ a → a = a → false := by finish
example (p : Prop) (a b c : nat) : [a, b, c] = [] → p := by finish

example (a b c : nat) : succ (succ a) = succ (succ b) → c = c := by finish
example (p : Prop) (a b : nat) : a = b → b ≠ a → p := by finish
example : (a ↔ b) → ((b ↔ a) ↔ (a ↔ b)) := by finish
example (a b c : nat) : b = c → (a = b ↔ c = a) := by finish [iff_def]
example : ¬¬¬¬¬¬¬¬a → ¬¬¬¬¬a → false := by finish
example (a b c : Prop) : a ∧ b ∧ c ↔ c ∧ b ∧ a := by finish
example (a b c : Prop) : a ∧ false ∧ c ↔ false := by finish
example (a b c : Prop) : a ∨ false ∨ b ↔ b ∨ a := by finish
example : a ∧ not a ↔ false := by finish
example : a ∧ b ∧ true → b ∧ a := by finish
example (A : Type) (a₁ a₂ : A) : a₁ = a₂ →
  (λ (B : Type) (f : A → B), f a₁) = (λ (B : Type) (f : A → B), f a₂) := by finish
example (a : nat) : ¬ a = a → false := by finish
example (A : Type) (p : Prop) (a b c : A) : a = b → b ≠ a → p := by finish
example (p q r s : Prop) : r ∧ s → p ∧ q → q ∧ p := by finish
example (p q : Prop) : p ∧ p ∧ q ∧ q → q ∧ p := by finish
example (p : nat → Prop) (q : nat → nat → Prop) :
  (∃ x y, p x ∧ q x y) → q 0 0 ∧ q 1 1 → (∃ x, p x) := by finish
example (p q r s : Prop) (a b : nat) : r ∨ s → p ∨ q → a = b → q ∨ p := by finish
example (p q r : Prop) (a b : nat) : true → a = a → q → q → p → p := by finish
example (a b : Prop) : a → b → a := by finish
example (p q : nat → Prop) (a b : nat) : p a → q b → ∃ x, p x := by finish

example : ∀ b1 b2, b1 && b2 = ff ↔ (b1 = ff ∨ b2 = ff) := by finish
example : ∀ b1 b2, b1 && b2 = tt ↔ (b1 = tt ∧ b2 = tt) := by finish
example : ∀ b1 b2, b1 || b2 = ff ↔ (b1 = ff ∧ b2 = ff) := by finish
example : ∀ b1 b2, b1 || b2 = tt ↔ (b1 = tt ∨ b2 = tt) := by finish
example : ∀ b, bnot b = tt ↔ b = ff := by finish
example : ∀ b, bnot b = ff ↔ b = tt := by finish
example : ∀ b c, b = c ↔ ¬ (b = bnot c) := by intros b c; cases b; cases c; finish [iff_def]

inductive and3 (a b c : Prop) : Prop
| mk : a → b → c → and3

example (h : and3 a b c) : and3 b c a := by cases h; split; finish

inductive or3 (a b c : Prop) : Prop
| in1 : a → or3
| in2 : b → or3
| in3 : c → or3

/- TODO(Jeremy): write a tactic that tries all constructors
example (h : a) : or3 a b c := sorry
example (h : b) : or3 a b c := sorry
example (h : c) : or3 a b c := sorry
-/

variables (A₁ A₂ A₃ A₄ B₁ B₂ B₃ B₄ : Prop)
-- H first, all pos

example (H1 : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄)
  (a1 : A₁) (a2 : A₂) (a3 : A₃) (n1 : ¬B₁) (n2 : ¬B₂) (n3 : ¬B₃) : B₄ := by finish
example (H1 : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄)
  (a1 : A₁) (a2 : A₂) (a3 : A₃) (n1 : ¬B₁) (n2 : ¬B₂) (n3 : ¬B₄) : B₃ := by finish
example (H1 : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄)
  (a1 : A₁) (a2 : A₂) (a3 : A₃) (n1 : ¬B₁) (n3 : ¬B₃) (n3 : ¬B₄) : B₂ := by finish
example (H1 : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄)
  (a1 : A₁) (a2 : A₂) (a3 : A₃) (n2 : ¬B₂) (n3 : ¬B₃) (n3 : ¬B₄) : B₁ := by finish

example (H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄)
  (a1 : A₁) (a2 : A₂) (n1 : ¬B₁) (n2 : ¬B₂) (n3 : ¬B₃) (n3 : ¬B₄) : ¬A₃ := by finish
example (H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄)
  (a1 : A₁) (a3 : A₃) (n1 : ¬B₁) (n2 : ¬B₂) (n3 : ¬B₃) (n3 : ¬B₄) : ¬A₂ := by finish
example (H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄)
  (a2 : A₂) (a3 : A₃) (n1 : ¬B₁) (n2 : ¬B₂) (n3 : ¬B₃) (n3 : ¬B₄) : ¬A₁ := by finish

-- H last, all pos
example (a1 : A₁) (a2 : A₂) (a3 : A₃) (n1 : ¬B₁) (n2 : ¬B₂) (n3 : ¬B₃)
  (H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄) : B₄ := by finish
example (a1 : A₁) (a2 : A₂) (a3 : A₃) (n1 : ¬B₁) (n2 : ¬B₂) (n3 : ¬B₄)
  (H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄) : B₃ := by finish
example (a1 : A₁) (a2 : A₂) (a3 : A₃) (n1 : ¬B₁) (n3 : ¬B₃) (n3 : ¬B₄)
  (H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄) : B₂ := by finish
example (a1 : A₁) (a2 : A₂) (a3 : A₃) (n2 : ¬B₂) (n3 : ¬B₃) (n3 : ¬B₄)
  (H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄) : B₁ := by finish

example (a1 : A₁) (a2 : A₂) (n1 : ¬B₁) (n2 : ¬B₂) (n3 : ¬B₃) (n3 : ¬B₄)
  (H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄) : ¬A₃ := by finish
example (a1 : A₁) (a3 : A₃) (n1 : ¬B₁) (n2 : ¬B₂) (n3 : ¬B₃) (n3 : ¬B₄)
  (H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄) : ¬A₂ := by finish
example (a2 : A₂) (a3 : A₃) (n1 : ¬B₁) (n2 : ¬B₂) (n3 : ¬B₃) (n3 : ¬B₄)
  (H : A₁ → A₂ → A₃ → B₁ ∨ B₂ ∨ B₃ ∨ B₄) : ¬A₁ := by finish

-- H first, all neg
example (H : ¬A₁ → ¬A₂ → ¬A₃ → ¬B₁ ∨ ¬B₂ ∨ ¬B₃ ∨ ¬B₄)
  (n1 : ¬A₁) (n2 : ¬A₂) (n3 : ¬A₃) (b1 : B₁) (b2 : B₂) (b3 : B₃) : ¬B₄ := by finish
example (H : ¬A₁ → ¬A₂ → ¬A₃ → ¬B₁ ∨ ¬B₂ ∨ ¬B₃ ∨ ¬B₄)
  (n1 : ¬A₁) (n2 : ¬A₂) (n3 : ¬A₃) (b1 : B₁) (b2 : B₂) (b4 : B₄) : ¬B₃ := by finish
example (H : ¬A₁ → ¬A₂ → ¬A₃ → ¬B₁ ∨ ¬B₂ ∨ ¬B₃ ∨ ¬B₄)
  (n1 : ¬A₁) (n2 : ¬A₂) (n3 : ¬A₃) (b1 : B₁) (b3 : B₃) (b4 : B₄) : ¬B₂ := by finish
example (H : ¬A₁ → ¬A₂ → ¬A₃ → ¬B₁ ∨ ¬B₂ ∨ ¬B₃ ∨ ¬B₄)
  (n1 : ¬A₁) (n2 : ¬A₂) (n3 : ¬A₃) (b2 : B₂) (b3 : B₃) (b4 : B₄) : ¬B₁ := by finish

example (H : ¬A₁ → ¬A₂ → ¬A₃ → ¬B₁ ∨ ¬B₂ ∨ ¬B₃ ∨ ¬B₄)
  (n1 : ¬A₁) (n2 : ¬A₂) (b1 : B₁) (b2 : B₂) (b3 : B₃) (b4 : B₄) : ¬¬A₃ := by finish
example (H : ¬A₁ → ¬A₂ → ¬A₃ → ¬B₁ ∨ ¬B₂ ∨ ¬B₃ ∨ ¬B₄)
  (n1 : ¬A₁) (n3 : ¬A₃) (b1 : B₁) (b2 : B₂) (b3 : B₃) (b4 : B₄) : ¬¬A₂ := by finish
example (H : ¬A₁ → ¬A₂ → ¬A₃ → ¬B₁ ∨ ¬B₂ ∨ ¬B₃ ∨ ¬B₄)
  (n2 : ¬A₂) (n3 : ¬A₃) (b1 : B₁) (b2 : B₂) (b3 : B₃) (b4 : B₄) : ¬¬A₁ := by finish

-- H last, all neg
example (n1 : ¬A₁) (n2 : ¬A₂) (n3 : ¬A₃) (b1 : B₁) (b2 : B₂) (b3 : B₃)
  (H : ¬A₁ → ¬A₂ → ¬A₃ → ¬B₁ ∨ ¬B₂ ∨ ¬B₃ ∨ ¬B₄) : ¬B₄ := by finish
example (n1 : ¬A₁) (n2 : ¬A₂) (n3 : ¬A₃) (b1 : B₁) (b2 : B₂) (b4 : B₄)
  (H : ¬A₁ → ¬A₂ → ¬A₃ → ¬B₁ ∨ ¬B₂ ∨ ¬B₃ ∨ ¬B₄) : ¬B₃ := by finish
example (n1 : ¬A₁) (n2 : ¬A₂) (n3 : ¬A₃) (b1 : B₁) (b3 : B₃) (b4 : B₄)
  (H : ¬A₁ → ¬A₂ → ¬A₃ → ¬B₁ ∨ ¬B₂ ∨ ¬B₃ ∨ ¬B₄) : ¬B₂ := by finish
example (n1 : ¬A₁) (n2 : ¬A₂) (n3 : ¬A₃) (b2 : B₂) (b3 : B₃) (b4 : B₄)
  (H : ¬A₁ → ¬A₂ → ¬A₃ → ¬B₁ ∨ ¬B₂ ∨ ¬B₃ ∨ ¬B₄) : ¬B₁ := by finish

example (n1 : ¬A₁) (n2 : ¬A₂) (b1 : B₁) (b2 : B₂) (b3 : B₃) (b4 : B₄)
  (H : ¬A₁ → ¬A₂ → ¬A₃ → ¬B₁ ∨ ¬B₂ ∨ ¬B₃ ∨ ¬B₄) : ¬¬A₃ := by finish
example (n1 : ¬A₁) (n3 : ¬A₃) (b1 : B₁) (b2 : B₂) (b3 : B₃) (b4 : B₄)
  (H : ¬A₁ → ¬A₂ → ¬A₃ → ¬B₁ ∨ ¬B₂ ∨ ¬B₃ ∨ ¬B₄) : ¬¬A₂ := by finish
example (n2 : ¬A₂) (n3 : ¬A₃) (b1 : B₁) (b2 : B₂) (b3 : B₃) (b4 : B₄)
  (H : ¬A₁ → ¬A₂ → ¬A₃ → ¬B₁ ∨ ¬B₂ ∨ ¬B₃ ∨ ¬B₄) : ¬¬A₁ := by finish

section club
variables Scottish RedSocks WearKilt Married GoOutSunday : Prop
theorem NoMember : (¬Scottish → RedSocks) → (WearKilt ∨ ¬RedSocks) → (Married → ¬GoOutSunday) →
                 (GoOutSunday ↔ Scottish) → (WearKilt → Scottish ∧ Married) →
                 (Scottish → WearKilt) → false := by finish
end club

end