CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".

Project: Xena
Views: 18536
License: APACHE
/-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon
-/

import tactic.rcases

universe u
variables {α β γ : Type u}

example (x : α × β × γ) : true :=
begin
  rcases x with ⟨a, b, c⟩,
  { guard_hyp a := α,
    guard_hyp b := β,
    guard_hyp c := γ,
    trivial }
end

example (x : α × β × γ) : true :=
begin
  rcases x with ⟨a, ⟨b, c⟩⟩,
  { guard_hyp a := α,
    guard_hyp b := β,
    guard_hyp c := γ,
    trivial }
end

example (x : (α × β) × γ) : true :=
begin
  rcases x with ⟨⟨a, b⟩, c⟩,
  { guard_hyp a := α,
    guard_hyp b := β,
    guard_hyp c := γ,
    trivial }
end

example : inhabited α × option β ⊕ γ → true :=
begin
  rintro (⟨⟨a⟩, _ | b⟩ | c),
  { guard_hyp a := α, trivial },
  { guard_hyp a := α, guard_hyp b := β, trivial },
  { guard_hyp c := γ, trivial }
end

example (x y : ℕ) (h : x = y) : true :=
begin
  rcases x with _|⟨⟩|z,
  { guard_hyp h := nat.zero = y, trivial },
  { guard_hyp h := nat.succ nat.zero = y, trivial },
  { guard_hyp z := ℕ,
    guard_hyp h := z.succ.succ = y, trivial },
end

-- from equiv.sum_empty
example (s : α ⊕ empty) : true :=
begin
  rcases s with _ | ⟨⟨⟩⟩,
  { guard_hyp s := α, trivial }
end

example : true :=
begin
  obtain ⟨n, h, f⟩ : ∃ n : ℕ, n = n ∧ true,
  { existsi 0, simp },
  guard_hyp n := ℕ,
  guard_hyp h := n = n,
  guard_hyp f := true,
  trivial
end

example : true :=
begin
  obtain : ∃ n : ℕ, n = n ∧ true,
  { existsi 0, simp },
  trivial
end

example : true :=
begin
  obtain h | ⟨⟨⟩⟩ : true ∨ false,
  { left, trivial },
  guard_hyp h := true,
  trivial
end

example : true :=
begin
  obtain h | ⟨⟨⟩⟩ : true ∨ false := or.inl trivial,
  guard_hyp h := true,
  trivial
end

example : true :=
begin
  obtain ⟨h, h2⟩ := and.intro trivial trivial,
  guard_hyp h := true,
  guard_hyp h2 := true,
  trivial
end

example : true :=
begin
  success_if_fail {obtain ⟨h, h2⟩},
  trivial
end

example {i j : ℕ} : (Σ' x, i ≤ x ∧ x ≤ j) → i ≤ j :=
begin
  intro h,
  rcases h' : h with ⟨x,h₀,h₁⟩,
  guard_hyp h' := h = ⟨x,h₀,h₁⟩,
  apply le_trans h₀ h₁,
end