Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
License: APACHE
/-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon
-/
import tactic.rcases
universe u
variables {α β γ : Type u}
example (x : α × β × γ) : true :=
begin
rcases x with ⟨a, b, c⟩,
{ guard_hyp a := α,
guard_hyp b := β,
guard_hyp c := γ,
trivial }
end
example (x : α × β × γ) : true :=
begin
rcases x with ⟨a, ⟨b, c⟩⟩,
{ guard_hyp a := α,
guard_hyp b := β,
guard_hyp c := γ,
trivial }
end
example (x : (α × β) × γ) : true :=
begin
rcases x with ⟨⟨a, b⟩, c⟩,
{ guard_hyp a := α,
guard_hyp b := β,
guard_hyp c := γ,
trivial }
end
example : inhabited α × option β ⊕ γ → true :=
begin
rintro (⟨⟨a⟩, _ | b⟩ | c),
{ guard_hyp a := α, trivial },
{ guard_hyp a := α, guard_hyp b := β, trivial },
{ guard_hyp c := γ, trivial }
end
example (x y : ℕ) (h : x = y) : true :=
begin
rcases x with _|⟨⟩|z,
{ guard_hyp h := nat.zero = y, trivial },
{ guard_hyp h := nat.succ nat.zero = y, trivial },
{ guard_hyp z := ℕ,
guard_hyp h := z.succ.succ = y, trivial },
end
-- from equiv.sum_empty
example (s : α ⊕ empty) : true :=
begin
rcases s with _ | ⟨⟨⟩⟩,
{ guard_hyp s := α, trivial }
end
example : true :=
begin
obtain ⟨n, h, f⟩ : ∃ n : ℕ, n = n ∧ true,
{ existsi 0, simp },
guard_hyp n := ℕ,
guard_hyp h := n = n,
guard_hyp f := true,
trivial
end
example : true :=
begin
obtain : ∃ n : ℕ, n = n ∧ true,
{ existsi 0, simp },
trivial
end
example : true :=
begin
obtain h | ⟨⟨⟩⟩ : true ∨ false,
{ left, trivial },
guard_hyp h := true,
trivial
end
example : true :=
begin
obtain h | ⟨⟨⟩⟩ : true ∨ false := or.inl trivial,
guard_hyp h := true,
trivial
end
example : true :=
begin
obtain ⟨h, h2⟩ := and.intro trivial trivial,
guard_hyp h := true,
guard_hyp h2 := true,
trivial
end
example : true :=
begin
success_if_fail {obtain ⟨h, h2⟩},
trivial
end
example {i j : ℕ} : (Σ' x, i ≤ x ∧ x ≤ j) → i ≤ j :=
begin
intro h,
rcases h' : h with ⟨x,h₀,h₁⟩,
guard_hyp h' := h = ⟨x,h₀,h₁⟩,
apply le_trans h₀ h₁,
end