Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".

31556 views
License: APACHE
import tactic.ring data.real.basic

example (x y : ℕ) : x + y = y + x := by ring
example (x y : ℕ) : x + y + y = 2 * y + x := by ring
example (x y : ℕ) : x + id y = y + id x := by ring!
example {α} [comm_ring α] (x y : α) : x + y + y - x = 2 * y := by ring
example (x y : ℚ) : x / 2 + x / 2 = x := by ring
example (x y : ℚ) : (x + y) ^ 3 = x ^ 3 + y ^ 3 + 3 * (x * y ^ 2 + x ^ 2 * y) := by ring
example (x y : ℝ) : (x + y) ^ 3 = x ^ 3 + y ^ 3 + 3 * (x * y ^ 2 + x ^ 2 * y) := by ring
example {α} [comm_semiring α] (x : α) : (x + 1) ^ 6 = (1 + x) ^ 6 := by try_for 15000 {ring}
example (a n s: ℕ) : a * (n - s) = (n - s) * a := by ring

example (x y z : ℚ) (hx : x ≠ 0) (hy : y ≠ 0) (hz : z ≠ 0) :
  x / (y / z) + y ⁻¹ + 1 / (y * -x) = -1/ (x * y) + (x * z + 1) / y :=
begin
  field_simp [hx, hy, hz],
  ring
end

example (a b c d x y : ℚ) (hx : x ≠ 0) (hy : y ≠ 0) :
  a + b / x + c / x^2 + d / x^3 = a + x⁻¹ * (y * b / y + (d / x + c) / x) :=
begin
  field_simp [hx, hy],
  ring
end