Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
License: APACHE
/-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import tactic.tidy
open tactic
namespace tidy.test
meta def interactive_simp := `[simp]
def tidy_test_0 : ∀ x : unit, x = unit.star :=
begin
success_if_fail { chain [ interactive_simp ] },
intro1,
induction x,
refl
end
def tidy_test_1 (a : string) : ∀ x : unit, x = unit.star :=
begin
tidy -- intros x, exact dec_trivial
end
structure A :=
(z : ℕ)
structure B :=
(a : A)
(aa : a.z = 0)
structure C :=
(a : A)
(b : B)
(ab : a.z = b.a.z)
structure D :=
(a : B)
(b : C)
(ab : a.a.z = b.a.z)
open tactic
def d : D :=
begin
tidy,
-- /- obviously says -/ fsplit, work_on_goal 0 { fsplit, work_on_goal 0 { fsplit }, work_on_goal 1 { refl } }, work_on_goal 0 { fsplit, work_on_goal 0 { fsplit }, work_on_goal 1 { fsplit, work_on_goal 0 { fsplit }, work_on_goal 1 { refl } }, work_on_goal 1 { refl } }, refl
end.
def f : unit → unit → unit := by tidy -- intros a a_1, cases a_1, cases a, fsplit
def g (P Q : Prop) (p : P) (h : P ↔ Q) : Q := by tidy
end tidy.test