Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18536License: APACHE
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon -/ import tactic.wlog section wlog example {x y : ℕ} (a : x = 1) : true := begin suffices : false, trivial, wlog h : x = y, { guard_target x = y ∨ y = x, admit }, { guard_hyp h := x = y, guard_hyp a := x = 1, admit } end example {x y : ℕ} : true := begin suffices : false, trivial, wlog h : x ≤ y, { guard_hyp h := x ≤ y, guard_target false, admit } end example {x y z : ℕ} : true := begin suffices : false, trivial, wlog : x ≤ y + z using x y, { guard_target x ≤ y + z ∨ y ≤ x + z, admit }, { guard_hyp case := x ≤ y + z, guard_target false, admit }, end example {x : ℕ} (S₀ S₁ : set ℕ) (P : ℕ → Prop) (h : x ∈ S₀ ∪ S₁) : true := begin suffices : false, trivial, wlog h' : x ∈ S₀ using S₀ S₁, { guard_target x ∈ S₀ ∨ x ∈ S₁, admit }, { guard_hyp h := x ∈ S₀ ∪ S₁, guard_hyp h' := x ∈ S₀, admit } end example {n m i : ℕ} {p : ℕ → ℕ → ℕ → Prop} : true := begin suffices : false, trivial, wlog : p n m i using [n m i, n i m, i n m], { guard_target p n m i ∨ p n i m ∨ p i n m, admit }, { guard_hyp case := p n m i, admit } end example {n m i : ℕ} {p : ℕ → Prop} : true := begin suffices : false, trivial, wlog : p n using [n m i, m n i, i n m], { guard_target p n ∨ p m ∨ p i, admit }, { guard_hyp case := p n, admit } end example {n m i : ℕ} {p : ℕ → ℕ → Prop} {q : ℕ → ℕ → ℕ → Prop} : true := begin suffices : q n m i, trivial, have h : p n i ∨ p i m ∨ p m i, from sorry, wlog : p n i := h using n m i, { guard_hyp h := p n i, guard_target q n m i, admit }, { guard_hyp h := p i m, guard_hyp this := q i m n, guard_target q n m i, admit }, { guard_hyp h := p m i, guard_hyp this := q m i n, guard_target q n m i, admit }, end example (X : Type) (A B C : set X) : A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) := begin ext x, split, { intro hyp, cases hyp, wlog x_in : x ∈ B using B C, { assumption }, { exact or.inl ⟨hyp_left, x_in⟩ } }, { intro hyp, wlog x_in : x ∈ A ∩ B using B C, { assumption }, { exact ⟨x_in.left, or.inl x_in.right⟩ } } end example (X : Type) (A B C : set X) : A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) := begin ext x, split, { intro hyp, wlog x_in : x ∈ B := hyp.2 using B C, { exact or.inl ⟨hyp.1, x_in⟩ } }, { intro hyp, wlog x_in : x ∈ A ∩ B := hyp using B C, { exact ⟨x_in.left, or.inl x_in.right⟩ } } end example (X : Type) (A B C : set X) : A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) := begin ext x, split, { intro hyp, cases hyp, wlog x_in : x ∈ B := hyp_right using B C, { exact or.inl ⟨hyp_left, x_in⟩ }, }, { intro hyp, wlog x_in : x ∈ A ∩ B := hyp using B C, { exact ⟨x_in.left, or.inl x_in.right⟩ } } end end wlog