Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".

30887 views
License: APACHE
oleanfile3.4.2, commit cbd2b6686ddb����%initdatafinsetalgebrabig_operatorstacticring��export_decloptionnonenonesomesomeexport_declboolffffttttexport_declhas_andthenandthenandthenexport_declhas_powpowpowexport_declhas_appendappendappendexport_decldecidableis_trueis_trueis_falseis_falseto_boolto_boolexport_declhas_purepurepureexport_declhas_bindbindbindexport_declhas_monad_lift_tmonad_lift!monad_liftexport_declmonad_functor_tmonad_map$monad_mapexport_declmonad_runrun'runexport_decllistmmap*mmapmmap'*mmap'mfilter*mfiltermfoldl*mfoldlexport_declnativenat_map3rb_mapmkexport_declname_mapnativerb_mapmkexport_declexpr_mapnativerb_mapmkexport_decltacticinteraction_monadfailedfailexport_decltactic_resultinteraction_monadresultexport_decltacticFtransparencyreducibleGreduciblesemireducibleGsemireducibleexport_decltacticmk_simp_attrLmk_simp_attrexport_declmonad_exceptthrowOthrowcatchOcatchexport_declmonad_except_adapteradapt_exceptTadapt_exceptexport_declmonad_state_adapteradapt_stateWadapt_stateexport_declmonad_readerreadZreadexport_declmonad_reader_adapteradapt_reader]adapt_readerexport_declis_lawful_functormap_const_eq`map_const_eqid_map`id_mapcomp_map`comp_mapexport_declis_lawful_applicativeseq_left_eqgseq_left_eqseq_right_eqgseq_right_eqpure_seq_eq_mapgpure_seq_eq_mapmap_puregmap_pureseq_puregseq_pureseq_assocgseq_assocexport_declis_lawful_monadbind_pure_comp_eq_maptbind_pure_comp_eq_mapbind_map_eq_seqtbind_map_eq_seqpure_bindtpure_bindbind_assoctbind_assocexport_decltraversabletraverse}traversenspacemaths_challengesdecl�oddnnat�has_addaddnathas_addhas_mulmulnathas_mulbit0has_oneonenathas_one�PInfo�VMR�VMC��natmulnatadddecl�equations_eqn_1�eq��eqrefl�PInfo�ATTR_refl_lemma���EqnL�SEqnL�decl�challenge05nfinsetsumnatadd_comm_monoidfinsetrangehas_powpow�has_pow��rec�4 '(natzerodhd4eqmpr'(�succ1Badd_semigroupto_has_addadd_monoidto_add_semigroupadd_comm_monoidto_add_monoid&A'(AHidI\eqrecE_a`'(@1hn_IZfinsetsum_range_succ&A?\V1AH^`\�eY_a`Tg'(gn�nv\�^�eqtransA�tacticringhorner�comm_semiring�AA1Anorm_numsubst_into_sum���A�has_zerozeronathas_zero������norm_numsubst_into_prodA��� tacticringhorner_atom�Atacticringhorner_const_mul�A���� mul_one�monoid����� �mul_zerosemiringto_mul_zero_class�semiring�tacticringhorner_add_const�A������norm_numbin_zero_add�add_monoid��/monoidhas_pow�A�eqsymm�0�natpow_eq_powAtacticringsubst_into_pow�A����tacticringhorner_pow�A���norm_nummul_bit0_helper�distrib���.semigroupto_has_mulmonoidto_semigroup�norm_numpow_bit0_helper�pow_one��O���]tacticringhorner_add_horner_lt�A�����norm_numone_add_onetacticringconst_add_horner�A������norm_numbin_add_zero�#���������4�����.���4����7��>����A������A��&���.���j�����pow_succ'����monoidpow�����������w�� ��tacticringhorner_mul_horner�A�����A����ecomm_semigroupto_semigroup�comm_semigroup�������mul_comm���one_mul��� �����tacticringhorner_add_horner_eq���A��������& ��PInfo�	EndFile