Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
| Download
Environment to perform calculations of equivariant vector bundles on homogeneous varieties
Path: Equivariant_Vector_Bundles_On_Homogeneous_Varieties__0-2 / tests / Playground_for_Complexes.ipynb
Views: 1562License: GPL3
Image: ubuntu2204
Kernel: SageMath 10.3
In [3]:
In [25]:
In [44]:
Let A0 be the subcategory of D^b(X) generated by E1 , ... , E6.
Complex C1 describing mutation of E7 through subcategory < A0 >
... --d_-2--> 0 --d_-1--> Kernel --d_0--> ( 2*B4(0,0,0,1) + B4(1,0,0,1) ) * VB(0) --d_1--> B4(0,0,0,1) * VB(Lambda[2] - Lambda[3]) + B4(0,0,0,1) * VB(Lambda[1]) + ( 2*B4(0,0,0,0) + B4(1,0,0,0) + B4(0,1,0,0) ) * VB(Lambda[4]) --d_2--> Equivariant extension of ( B4(0,0,0,0) + B4(1,0,0,0) ) * VB(Lambda[1] + Lambda[4]) by ( B4(0,0,0,0) + B4(1,0,0,0) ) * VB(Lambda[4]) --d_3--> Equivariant extension of VB(2*Lambda[1] + Lambda[4]) by VB(Lambda[1] + Lambda[4]) --d_4--> 0 --d_5--> ...
Degree=0 : 0
Degree=1 : 0
Degree=2 : 0
Degree=3 : 0
Degree=4 : 0
Degree=5 : 0
R1 = Semi-simplification of C1_0:
VB(Lambda[2] - Lambda[3] + Lambda[4]) + VB(Lambda[1] - Lambda[3] + Lambda[4]) + 2*B4(0,0,0,0) * VB(-Lambda[3] + Lambda[4]) + VB(Lambda[1] - 2*Lambda[3] + 3*Lambda[4]) + VB(-2*Lambda[3] + 3*Lambda[4])
Complex C2 describing mutation of E7(1) through subcategory < A0 , A0(1) >
... --d_-2--> 0 --d_-1--> Kernel --d_0--> ( 2*B4(0,0,0,1) + B4(1,0,0,1) ) * VB(0) --d_1--> B4(0,0,0,1) * VB(Lambda[2] - Lambda[3]) + ( 2*B4(0,0,0,0) + B4(1,0,0,0) + B4(0,1,0,0) ) * VB(Lambda[4]) --d_2--> ( 2*B4(0,0,0,1) + B4(1,0,0,1) ) * VB(Lambda[3]) --d_3--> B4(0,0,0,1) * VB(Lambda[2]) + B4(0,0,0,1) * VB(Lambda[1] + Lambda[3]) + ( 2*B4(0,0,0,0) + B4(1,0,0,0) + B4(0,1,0,0) ) * VB(Lambda[3] + Lambda[4]) --d_4--> Equivariant extension of ( B4(0,0,0,0) + B4(1,0,0,0) ) * VB(Lambda[1] + Lambda[3] + Lambda[4]) by ( B4(0,0,0,0) + B4(1,0,0,0) ) * VB(Lambda[3] + Lambda[4]) --d_5--> Equivariant extension of VB(2*Lambda[1] + Lambda[3] + Lambda[4]) by VB(Lambda[1] + Lambda[3] + Lambda[4]) --d_6--> 0 --d_7--> ...
Degree=0 : 0
Degree=1 : 0
Degree=2 : 0
Degree=3 : 0
Degree=4 : 0
Degree=5 : 0
Degree=6 : 0
Degree=7 : 0
R2 = Semi-simplification of C2_0:
2*B4(0,0,0,0) * VB(Lambda[1] - Lambda[3] + Lambda[4]) + 2*B4(0,0,0,0) * VB(-Lambda[3] + Lambda[4]) + VB(Lambda[2] - Lambda[3] + Lambda[4]) + VB(2*Lambda[1] - Lambda[3] + Lambda[4]) + VB(Lambda[1] - 2*Lambda[3] + 3*Lambda[4]) + VB(-2*Lambda[3] + 3*Lambda[4])
Gram matrix of the residual category:
+-------------+-------------+
| B4(0,0,0,0) | B4(0,0,0,0) |
+-------------+-------------+
| 0 | B4(0,0,0,0) |
+-------------+-------------+
In [0]:
In [0]:
In [75]:
Complex C describing left mutation of E7(1) through subcategory cD = < A0 , A1(1) , ... , A4(4) >
... --d_-2--> 0 --d_-1--> Kernel --d_0--> Equivariant extension of B4(0,0,0,1) * VB(Lambda[1] + 4*Lambda[3] + Lambda[4]) by B4(0,0,0,1) * VB(4*Lambda[3] + Lambda[4]) --d_1--> VB(5*Lambda[3]) --d_2--> 0 --d_3--> ...
Degree=0 : 0
Degree=1 : 0
Degree=2 : 0
Degree=3 : 0
Semi-simplification of C_0:
VB(5*Lambda[3]) + VB(Lambda[1] + Lambda[2] + 3*Lambda[3] + 2*Lambda[4]) + VB(Lambda[1] + Lambda[2] + 4*Lambda[3]) + 2*B4(0,0,0,0) * VB(4*Lambda[3] + 2*Lambda[4]) + VB(2*Lambda[1] + 3*Lambda[3] + 2*Lambda[4]) + VB(2*Lambda[1] + 4*Lambda[3]) + 2*B4(0,0,0,0) * VB(Lambda[2] + 3*Lambda[3] + 2*Lambda[4]) + 2*B4(0,0,0,0) * VB(Lambda[2] + 4*Lambda[3]) + VB(Lambda[1] + 4*Lambda[3] + 2*Lambda[4]) + VB(Lambda[1] + 5*Lambda[3]) + 2*B4(0,0,0,0) * VB(Lambda[1] + 3*Lambda[3] + 2*Lambda[4]) + 2*B4(0,0,0,0) * VB(Lambda[1] + 4*Lambda[3]) + VB(3*Lambda[3] + 2*Lambda[4]) + VB(4*Lambda[3])
In [76]:
-2*B4(0,0,0,0) - 2*B4(1,0,0,0) - 3*B4(0,1,0,0) - 2*B4(0,0,1,0) - 2*B4(0,0,0,2) - B4(2,0,0,0) - B4(1,1,0,0) - B4(1,0,1,0) - B4(1,0,0,2)
In [0]: