See sage docs.
f(x,y,z) = (x^2+(9/4)*y^2+z^2-1)^3-x^2*z^3-(9/80)*y^2*z^3 show(f)
(x,y,z) ↦ −x2z3−980 y2z3+164 (4 x2+9 y2+4 z2−4)3\displaystyle \left( x, y, z \right) \ {\mapsto} \ -x^{2} z^{3} - \frac{9}{80} \, y^{2} z^{3} + \frac{1}{64} \, {\left(4 \, x^{2} + 9 \, y^{2} + 4 \, z^{2} - 4\right)}^{3}(x,y,z) ↦ −x2z3−809y2z3+641(4x2+9y2+4z2−4)3
x,y,z = var ('x','y','z') w = 1.5 implicit_plot3d(f == 0, (x,-w,w),(y,-w,w),(z,-w,w), plot_points=80, color='red', smooth=False, frame=False)