CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
hrydgard

CoCalc provides the best real-time collaborative environment for Jupyter Notebooks, LaTeX documents, and SageMath, scalable from individual users to large groups and classes!

GitHub Repository: hrydgard/ppsspp
Path: blob/master/ext/sfmt19937/SFMT.c
Views: 1401
1
/**
2
* @file SFMT.c
3
* @brief SIMD oriented Fast Mersenne Twister(SFMT)
4
*
5
* @author Mutsuo Saito (Hiroshima University)
6
* @author Makoto Matsumoto (Hiroshima University)
7
*
8
* Copyright (C) 2006, 2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
9
* University.
10
* Copyright (C) 2012 Mutsuo Saito, Makoto Matsumoto, Hiroshima
11
* University and The University of Tokyo.
12
* Copyright (C) 2013 Mutsuo Saito, Makoto Matsumoto and Hiroshima
13
* University.
14
* All rights reserved.
15
*
16
* The 3-clause BSD License is applied to this software, see
17
* LICENSE.txt
18
*/
19
20
#if defined(__cplusplus)
21
extern "C" {
22
#endif
23
24
#include <string.h>
25
#include <assert.h>
26
#include "SFMT.h"
27
#include "SFMT-params.h"
28
#include "SFMT-common.h"
29
30
#if defined(__BIG_ENDIAN__) && !defined(__amd64) && !defined(BIG_ENDIAN64)
31
#define BIG_ENDIAN64 1
32
#endif
33
#if defined(HAVE_ALTIVEC) && !defined(BIG_ENDIAN64)
34
#define BIG_ENDIAN64 1
35
#endif
36
#if defined(ONLY64) && !defined(BIG_ENDIAN64)
37
#if defined(__GNUC__)
38
#error "-DONLY64 must be specified with -DBIG_ENDIAN64"
39
#endif
40
#undef ONLY64
41
#endif
42
43
/**
44
* parameters used by sse2.
45
*/
46
static const w128_t sse2_param_mask = {{SFMT_MSK1, SFMT_MSK2,
47
SFMT_MSK3, SFMT_MSK4}};
48
/*----------------
49
STATIC FUNCTIONS
50
----------------*/
51
inline static int idxof(int i);
52
inline static void gen_rand_array(sfmt_t * sfmt, w128_t *array, int size);
53
inline static uint32_t func1(uint32_t x);
54
inline static uint32_t func2(uint32_t x);
55
static void period_certification(sfmt_t * sfmt);
56
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
57
inline static void swap(w128_t *array, int size);
58
#endif
59
60
#if defined(HAVE_ALTIVEC)
61
#include "SFMT-alti.h"
62
#elif defined(HAVE_SSE2)
63
#if defined(_MSC_VER)
64
#include "SFMT-sse2-msc.h"
65
#else
66
#include "SFMT-sse2.h"
67
#endif
68
#endif
69
70
/**
71
* This function simulate a 64-bit index of LITTLE ENDIAN
72
* in BIG ENDIAN machine.
73
*/
74
#ifdef ONLY64
75
inline static int idxof(int i) {
76
return i ^ 1;
77
}
78
#else
79
inline static int idxof(int i) {
80
return i;
81
}
82
#endif
83
84
#if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
85
/**
86
* This function fills the user-specified array with pseudorandom
87
* integers.
88
*
89
* @param sfmt SFMT internal state
90
* @param array an 128-bit array to be filled by pseudorandom numbers.
91
* @param size number of 128-bit pseudorandom numbers to be generated.
92
*/
93
inline static void gen_rand_array(sfmt_t * sfmt, w128_t *array, int size) {
94
int i, j;
95
w128_t *r1, *r2;
96
97
r1 = &sfmt->state[SFMT_N - 2];
98
r2 = &sfmt->state[SFMT_N - 1];
99
for (i = 0; i < SFMT_N - SFMT_POS1; i++) {
100
do_recursion(&array[i], &sfmt->state[i], &sfmt->state[i + SFMT_POS1], r1, r2);
101
r1 = r2;
102
r2 = &array[i];
103
}
104
for (; i < SFMT_N; i++) {
105
do_recursion(&array[i], &sfmt->state[i],
106
&array[i + SFMT_POS1 - SFMT_N], r1, r2);
107
r1 = r2;
108
r2 = &array[i];
109
}
110
for (; i < size - SFMT_N; i++) {
111
do_recursion(&array[i], &array[i - SFMT_N],
112
&array[i + SFMT_POS1 - SFMT_N], r1, r2);
113
r1 = r2;
114
r2 = &array[i];
115
}
116
for (j = 0; j < 2 * SFMT_N - size; j++) {
117
sfmt->state[j] = array[j + size - SFMT_N];
118
}
119
for (; i < size; i++, j++) {
120
do_recursion(&array[i], &array[i - SFMT_N],
121
&array[i + SFMT_POS1 - SFMT_N], r1, r2);
122
r1 = r2;
123
r2 = &array[i];
124
sfmt->state[j] = array[i];
125
}
126
}
127
#endif
128
129
#if defined(BIG_ENDIAN64) && !defined(ONLY64) && !defined(HAVE_ALTIVEC)
130
inline static void swap(w128_t *array, int size) {
131
int i;
132
uint32_t x, y;
133
134
for (i = 0; i < size; i++) {
135
x = array[i].u[0];
136
y = array[i].u[2];
137
array[i].u[0] = array[i].u[1];
138
array[i].u[2] = array[i].u[3];
139
array[i].u[1] = x;
140
array[i].u[3] = y;
141
}
142
}
143
#endif
144
/**
145
* This function represents a function used in the initialization
146
* by init_by_array
147
* @param x 32-bit integer
148
* @return 32-bit integer
149
*/
150
static uint32_t func1(uint32_t x) {
151
return (x ^ (x >> 27)) * (uint32_t)1664525UL;
152
}
153
154
/**
155
* This function represents a function used in the initialization
156
* by init_by_array
157
* @param x 32-bit integer
158
* @return 32-bit integer
159
*/
160
static uint32_t func2(uint32_t x) {
161
return (x ^ (x >> 27)) * (uint32_t)1566083941UL;
162
}
163
164
/**
165
* This function certificate the period of 2^{MEXP}
166
* @param sfmt SFMT internal state
167
*/
168
static void period_certification(sfmt_t * sfmt) {
169
int inner = 0;
170
int i, j;
171
uint32_t work;
172
uint32_t *psfmt32 = &sfmt->state[0].u[0];
173
const uint32_t parity[4] = {SFMT_PARITY1, SFMT_PARITY2,
174
SFMT_PARITY3, SFMT_PARITY4};
175
176
for (i = 0; i < 4; i++)
177
inner ^= psfmt32[idxof(i)] & parity[i];
178
for (i = 16; i > 0; i >>= 1)
179
inner ^= inner >> i;
180
inner &= 1;
181
/* check OK */
182
if (inner == 1) {
183
return;
184
}
185
/* check NG, and modification */
186
for (i = 0; i < 4; i++) {
187
work = 1;
188
for (j = 0; j < 32; j++) {
189
if ((work & parity[i]) != 0) {
190
psfmt32[idxof(i)] ^= work;
191
return;
192
}
193
work = work << 1;
194
}
195
}
196
}
197
198
/*----------------
199
PUBLIC FUNCTIONS
200
----------------*/
201
#define UNUSED_VARIABLE(x) (void)(x)
202
/**
203
* This function returns the identification string.
204
* The string shows the word size, the Mersenne exponent,
205
* and all parameters of this generator.
206
* @param sfmt SFMT internal state
207
*/
208
const char *sfmt_get_idstring(sfmt_t * sfmt) {
209
UNUSED_VARIABLE(sfmt);
210
return SFMT_IDSTR;
211
}
212
213
/**
214
* This function returns the minimum size of array used for \b
215
* fill_array32() function.
216
* @param sfmt SFMT internal state
217
* @return minimum size of array used for fill_array32() function.
218
*/
219
int sfmt_get_min_array_size32(sfmt_t * sfmt) {
220
UNUSED_VARIABLE(sfmt);
221
return SFMT_N32;
222
}
223
224
/**
225
* This function returns the minimum size of array used for \b
226
* fill_array64() function.
227
* @param sfmt SFMT internal state
228
* @return minimum size of array used for fill_array64() function.
229
*/
230
int sfmt_get_min_array_size64(sfmt_t * sfmt) {
231
UNUSED_VARIABLE(sfmt);
232
return SFMT_N64;
233
}
234
235
#if !defined(HAVE_SSE2) && !defined(HAVE_ALTIVEC)
236
/**
237
* This function fills the internal state array with pseudorandom
238
* integers.
239
* @param sfmt SFMT internal state
240
*/
241
void sfmt_gen_rand_all(sfmt_t * sfmt) {
242
int i;
243
w128_t *r1, *r2;
244
245
r1 = &sfmt->state[SFMT_N - 2];
246
r2 = &sfmt->state[SFMT_N - 1];
247
for (i = 0; i < SFMT_N - SFMT_POS1; i++) {
248
do_recursion(&sfmt->state[i], &sfmt->state[i],
249
&sfmt->state[i + SFMT_POS1], r1, r2);
250
r1 = r2;
251
r2 = &sfmt->state[i];
252
}
253
for (; i < SFMT_N; i++) {
254
do_recursion(&sfmt->state[i], &sfmt->state[i],
255
&sfmt->state[i + SFMT_POS1 - SFMT_N], r1, r2);
256
r1 = r2;
257
r2 = &sfmt->state[i];
258
}
259
}
260
#endif
261
262
#ifndef ONLY64
263
/**
264
* This function generates pseudorandom 32-bit integers in the
265
* specified array[] by one call. The number of pseudorandom integers
266
* is specified by the argument size, which must be at least 624 and a
267
* multiple of four. The generation by this function is much faster
268
* than the following gen_rand function.
269
*
270
* For initialization, init_gen_rand or init_by_array must be called
271
* before the first call of this function. This function can not be
272
* used after calling gen_rand function, without initialization.
273
*
274
* @param sfmt SFMT internal state
275
* @param array an array where pseudorandom 32-bit integers are filled
276
* by this function. The pointer to the array must be \b "aligned"
277
* (namely, must be a multiple of 16) in the SIMD version, since it
278
* refers to the address of a 128-bit integer. In the standard C
279
* version, the pointer is arbitrary.
280
*
281
* @param size the number of 32-bit pseudorandom integers to be
282
* generated. size must be a multiple of 4, and greater than or equal
283
* to (MEXP / 128 + 1) * 4.
284
*
285
* @note \b memalign or \b posix_memalign is available to get aligned
286
* memory. Mac OSX doesn't have these functions, but \b malloc of OSX
287
* returns the pointer to the aligned memory block.
288
*/
289
void sfmt_fill_array32(sfmt_t * sfmt, uint32_t *array, int size) {
290
assert(sfmt->idx == SFMT_N32);
291
assert(size % 4 == 0);
292
assert(size >= SFMT_N32);
293
294
gen_rand_array(sfmt, (w128_t *)array, size / 4);
295
sfmt->idx = SFMT_N32;
296
}
297
#endif
298
299
/**
300
* This function generates pseudorandom 64-bit integers in the
301
* specified array[] by one call. The number of pseudorandom integers
302
* is specified by the argument size, which must be at least 312 and a
303
* multiple of two. The generation by this function is much faster
304
* than the following gen_rand function.
305
*
306
* @param sfmt SFMT internal state
307
* For initialization, init_gen_rand or init_by_array must be called
308
* before the first call of this function. This function can not be
309
* used after calling gen_rand function, without initialization.
310
*
311
* @param array an array where pseudorandom 64-bit integers are filled
312
* by this function. The pointer to the array must be "aligned"
313
* (namely, must be a multiple of 16) in the SIMD version, since it
314
* refers to the address of a 128-bit integer. In the standard C
315
* version, the pointer is arbitrary.
316
*
317
* @param size the number of 64-bit pseudorandom integers to be
318
* generated. size must be a multiple of 2, and greater than or equal
319
* to (MEXP / 128 + 1) * 2
320
*
321
* @note \b memalign or \b posix_memalign is available to get aligned
322
* memory. Mac OSX doesn't have these functions, but \b malloc of OSX
323
* returns the pointer to the aligned memory block.
324
*/
325
void sfmt_fill_array64(sfmt_t * sfmt, uint64_t *array, int size) {
326
assert(sfmt->idx == SFMT_N32);
327
assert(size % 2 == 0);
328
assert(size >= SFMT_N64);
329
330
gen_rand_array(sfmt, (w128_t *)array, size / 2);
331
sfmt->idx = SFMT_N32;
332
333
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
334
swap((w128_t *)array, size /2);
335
#endif
336
}
337
338
/**
339
* This function initializes the internal state array with a 32-bit
340
* integer seed.
341
*
342
* @param sfmt SFMT internal state
343
* @param seed a 32-bit integer used as the seed.
344
*/
345
void sfmt_init_gen_rand(sfmt_t * sfmt, uint32_t seed) {
346
int i;
347
348
uint32_t *psfmt32 = &sfmt->state[0].u[0];
349
350
psfmt32[idxof(0)] = seed;
351
for (i = 1; i < SFMT_N32; i++) {
352
psfmt32[idxof(i)] = 1812433253UL * (psfmt32[idxof(i - 1)]
353
^ (psfmt32[idxof(i - 1)] >> 30))
354
+ i;
355
}
356
sfmt->idx = SFMT_N32;
357
period_certification(sfmt);
358
}
359
360
/**
361
* This function initializes the internal state array,
362
* with an array of 32-bit integers used as the seeds
363
* @param sfmt SFMT internal state
364
* @param init_key the array of 32-bit integers, used as a seed.
365
* @param key_length the length of init_key.
366
*/
367
void sfmt_init_by_array(sfmt_t * sfmt, uint32_t *init_key, int key_length) {
368
int i, j, count;
369
uint32_t r;
370
int lag;
371
int mid;
372
int size = SFMT_N * 4;
373
uint32_t *psfmt32 = &sfmt->state[0].u[0];
374
375
if (size >= 623) {
376
lag = 11;
377
} else if (size >= 68) {
378
lag = 7;
379
} else if (size >= 39) {
380
lag = 5;
381
} else {
382
lag = 3;
383
}
384
mid = (size - lag) / 2;
385
386
memset(sfmt, 0x8b, sizeof(sfmt_t));
387
if (key_length + 1 > SFMT_N32) {
388
count = key_length + 1;
389
} else {
390
count = SFMT_N32;
391
}
392
r = func1(psfmt32[idxof(0)] ^ psfmt32[idxof(mid)]
393
^ psfmt32[idxof(SFMT_N32 - 1)]);
394
psfmt32[idxof(mid)] += r;
395
r += key_length;
396
psfmt32[idxof(mid + lag)] += r;
397
psfmt32[idxof(0)] = r;
398
399
count--;
400
for (i = 1, j = 0; (j < count) && (j < key_length); j++) {
401
r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % SFMT_N32)]
402
^ psfmt32[idxof((i + SFMT_N32 - 1) % SFMT_N32)]);
403
psfmt32[idxof((i + mid) % SFMT_N32)] += r;
404
r += init_key[j] + i;
405
psfmt32[idxof((i + mid + lag) % SFMT_N32)] += r;
406
psfmt32[idxof(i)] = r;
407
i = (i + 1) % SFMT_N32;
408
}
409
for (; j < count; j++) {
410
r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % SFMT_N32)]
411
^ psfmt32[idxof((i + SFMT_N32 - 1) % SFMT_N32)]);
412
psfmt32[idxof((i + mid) % SFMT_N32)] += r;
413
r += i;
414
psfmt32[idxof((i + mid + lag) % SFMT_N32)] += r;
415
psfmt32[idxof(i)] = r;
416
i = (i + 1) % SFMT_N32;
417
}
418
for (j = 0; j < SFMT_N32; j++) {
419
r = func2(psfmt32[idxof(i)] + psfmt32[idxof((i + mid) % SFMT_N32)]
420
+ psfmt32[idxof((i + SFMT_N32 - 1) % SFMT_N32)]);
421
psfmt32[idxof((i + mid) % SFMT_N32)] ^= r;
422
r -= i;
423
psfmt32[idxof((i + mid + lag) % SFMT_N32)] ^= r;
424
psfmt32[idxof(i)] = r;
425
i = (i + 1) % SFMT_N32;
426
}
427
428
sfmt->idx = SFMT_N32;
429
period_certification(sfmt);
430
}
431
#if defined(__cplusplus)
432
}
433
#endif
434
435