Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
3774 views
ubuntu2004
1
<exercise checkit-seed="0008" checkit-slug="AA1" checkit-title="Structure of an IVP and Verifying Solutions">
2
<statement>
3
<p>
4
For each of the following Initial Value Problems (IVPs), designate the following:
5
</p>
6
<ul>
7
<li>its Ordinary Differential Equation (ODE)</li>
8
<li>its Initial Value or Values (IVs)</li>
9
<li>the order of the IVP</li>
10
<li>its independent variable</li>
11
<li>its dependent variable</li>
12
<li>whether its solution is implicit or explicit</li>
13
</ul>
14
<p>
15
Then show how to verify that its solution is valid.
16
</p>
17
<ol>
18
<li>
19
<ul>
20
<li>IVP:
21
<m>
22
3 \, x + 4 \, {\frac{dx}{dt}} + {\frac{d^2x}{dt^2}} = 0;\qquad
23
x(0)=
24
3,
25
x'(0)=
26
-3
27
</m>
28
</li>
29
<li>Solution: <m>x = 3 \, e^{\left(-t\right)}</m></li>
30
</ul>
31
</li>
32
<li>
33
<ul>
34
<li>IVP:
35
<m>
36
-5 \, t {y'} - 5 \, y = -3 \, y^{2} {y'};\qquad
37
y(-1)=
38
1 </m>
39
</li>
40
<li>Solution: <m>y^{3} - 5 \, t y = 6</m></li>
41
</ul>
42
</li>
43
<li>
44
<ul>
45
<li>IVP:
46
<m>
47
-10 \, t^{2} - t {x'} + 4 \, x = 0;\qquad
48
x(-1)=
49
2 </m>
50
</li>
51
<li>Solution: <m>x = -3 \, t^{4} + 5 \, t^{2}</m></li>
52
</ul>
53
</li>
54
</ol>
55
</statement>
56
<answer>
57
<ol>
58
<li>
59
<ul>
60
<li>ODE: <m>3 \, x + 4 \, {\frac{dx}{dt}} + {\frac{d^2x}{dt^2}} = 0</m></li>
61
<li>IV(s): <m>
62
x(0)=3
63
,x'(0)=-3
64
</m></li>
65
<li>Order: 2nd</li>
66
<li>Independent variable: <m>t</m></li>
67
<li>Dependent variable: <m>x</m></li>
68
<li>The solution <m>x = 3 \, e^{\left(-t\right)}</m> is explicit.</li>
69
</ul>
70
</li>
71
<li>
72
<ul>
73
<li>ODE: <m>-5 \, t {y'} - 5 \, y = -3 \, y^{2} {y'}</m></li>
74
<li>IV(s): <m>
75
y(-1)=1
76
77
</m></li>
78
<li>Order: 1st</li>
79
<li>Independent variable: <m>t</m></li>
80
<li>Dependent variable: <m>y</m></li>
81
<li>The solution <m>y^{3} - 5 \, t y = 6</m> is implicit.</li>
82
</ul>
83
</li>
84
<li>
85
<ul>
86
<li>ODE: <m>-10 \, t^{2} - t {x'} + 4 \, x = 0</m></li>
87
<li>IV(s): <m>
88
x(-1)=2
89
90
</m></li>
91
<li>Order: 1st</li>
92
<li>Independent variable: <m>t</m></li>
93
<li>Dependent variable: <m>x</m></li>
94
<li>The solution <m>x = -3 \, t^{4} + 5 \, t^{2}</m> is explicit.</li>
95
</ul>
96
</li>
97
</ol>
98
</answer>
99
</exercise>
100
101