ubuntu2004
<exercise checkit-seed="0008" checkit-slug="AA1" checkit-title="Structure of an IVP and Verifying Solutions">1<statement>2<p>3For each of the following Initial Value Problems (IVPs), designate the following:4</p>5<ul>6<li>its Ordinary Differential Equation (ODE)</li>7<li>its Initial Value or Values (IVs)</li>8<li>the order of the IVP</li>9<li>its independent variable</li>10<li>its dependent variable</li>11<li>whether its solution is implicit or explicit</li>12</ul>13<p>14Then show how to verify that its solution is valid.15</p>16<ol>17<li>18<ul>19<li>IVP:20<m>213 \, x + 4 \, {\frac{dx}{dt}} + {\frac{d^2x}{dt^2}} = 0;\qquad22x(0)=233,24x'(0)=25-326</m>27</li>28<li>Solution: <m>x = 3 \, e^{\left(-t\right)}</m></li>29</ul>30</li>31<li>32<ul>33<li>IVP:34<m>35-5 \, t {y'} - 5 \, y = -3 \, y^{2} {y'};\qquad36y(-1)=371 </m>38</li>39<li>Solution: <m>y^{3} - 5 \, t y = 6</m></li>40</ul>41</li>42<li>43<ul>44<li>IVP:45<m>46-10 \, t^{2} - t {x'} + 4 \, x = 0;\qquad47x(-1)=482 </m>49</li>50<li>Solution: <m>x = -3 \, t^{4} + 5 \, t^{2}</m></li>51</ul>52</li>53</ol>54</statement>55<answer>56<ol>57<li>58<ul>59<li>ODE: <m>3 \, x + 4 \, {\frac{dx}{dt}} + {\frac{d^2x}{dt^2}} = 0</m></li>60<li>IV(s): <m>61x(0)=362,x'(0)=-363</m></li>64<li>Order: 2nd</li>65<li>Independent variable: <m>t</m></li>66<li>Dependent variable: <m>x</m></li>67<li>The solution <m>x = 3 \, e^{\left(-t\right)}</m> is explicit.</li>68</ul>69</li>70<li>71<ul>72<li>ODE: <m>-5 \, t {y'} - 5 \, y = -3 \, y^{2} {y'}</m></li>73<li>IV(s): <m>74y(-1)=17576</m></li>77<li>Order: 1st</li>78<li>Independent variable: <m>t</m></li>79<li>Dependent variable: <m>y</m></li>80<li>The solution <m>y^{3} - 5 \, t y = 6</m> is implicit.</li>81</ul>82</li>83<li>84<ul>85<li>ODE: <m>-10 \, t^{2} - t {x'} + 4 \, x = 0</m></li>86<li>IV(s): <m>87x(-1)=28889</m></li>90<li>Order: 1st</li>91<li>Independent variable: <m>t</m></li>92<li>Dependent variable: <m>x</m></li>93<li>The solution <m>x = -3 \, t^{4} + 5 \, t^{2}</m> is explicit.</li>94</ul>95</li>96</ol>97</answer>98</exercise>99100101