Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
3774 views
ubuntu2004
1
<?xml version='1.0' encoding='UTF-8'?>
2
<exercise xmlns="https://spatext.clontz.org" version="0.0">
3
<statement>
4
<p>
5
Consider the following maps of polynomials <m>S:\mathcal{P}\rightarrow\mathcal{P}</m>
6
and <m>T:\mathcal{P}\rightarrow\mathcal{P}</m> defined by
7
<me>
8
S({{f_letter}}(x))=
9
{{#swapped}}
10
{{nonlinear_trans}}
11
{{/swapped}}
12
{{^swapped}}
13
{{linear_trans}}
14
{{/swapped}}
15
\hspace{1em} \text{and} \hspace{1em}
16
T({{f_letter}}(x))=
17
{{^swapped}}
18
{{nonlinear_trans}}
19
{{/swapped}}
20
{{#swapped}}
21
{{linear_trans}}
22
{{/swapped}}
23
</me>
24
Explain why one these maps is a linear transformation and why the other map is not.
25
</p>
26
</statement>
27
<answer>
28
{{#swapped}}
29
<p><m>S</m> is not linear and <m>T</m> is linear.</p>
30
{{/swapped}}
31
{{^swapped}}
32
<p><m>S</m> is linear and <m>T</m> is not linear.</p>
33
{{/swapped}}
34
</answer>
35
</exercise>
36