<?xml version='1.0' encoding='UTF-8'?>
<exercise xmlns="https://spatext.clontz.org" version="0.0">
<statement>
<p>
Consider the following maps of polynomials <m>S:\mathcal{P}\rightarrow\mathcal{P}</m>
and <m>T:\mathcal{P}\rightarrow\mathcal{P}</m> defined by
<me>
S({{f_letter}}(x))=
{{#swapped}}
{{nonlinear_trans}}
{{/swapped}}
{{^swapped}}
{{linear_trans}}
{{/swapped}}
\hspace{1em} \text{and} \hspace{1em}
T({{f_letter}}(x))=
{{^swapped}}
{{nonlinear_trans}}
{{/swapped}}
{{#swapped}}
{{linear_trans}}
{{/swapped}}
</me>
Explain why one these maps is a linear transformation and why the other map is not.
</p>
</statement>
<answer>
{{#swapped}}
<p><m>S</m> is not linear and <m>T</m> is linear.</p>
{{/swapped}}
{{^swapped}}
<p><m>S</m> is linear and <m>T</m> is not linear.</p>
{{/swapped}}
</answer>
</exercise>