ubuntu2004
<exercise checkit-seed="0000" checkit-slug="AA1" checkit-title="Structure of an IVP and Verifying Solutions">1<statement>2<p>3For each of the following Initial Value Problems (IVPs), designate the following:4</p>5<ul>6<li>its Ordinary Differential Equation (ODE)</li>7<li>its Initial Value or Values (IVs)</li>8<li>the order of the IVP</li>9<li>its independent variable</li>10<li>its dependent variable</li>11<li>whether its solution is implicit or explicit</li>12</ul>13<p>14Then show how to verify that its solution is valid.15</p>16<ol>17<li>18<ul>19<li>IVP:20<m>21-x {y'} = -5 \, x^{4} - 3 \, y;\qquad22y(-1)=233 </m>24</li>25<li>Solution: <m>y = 5 \, x^{4} + 2 \, x^{3}</m></li>26</ul>27</li>28<li>29<ul>30<li>IVP:31<m>32{\frac{d^2y}{dt^2}} = -5 \, y + 6 \, {\frac{dy}{dt}};\qquad33y(0)=343,35y'(0)=36337</m>38</li>39<li>Solution: <m>y = 3 \, e^{t}</m></li>40</ul>41</li>42<li>43<ul>44<li>IVP:45<m>462 \, t {x'} + 2 \, x = 4 \, x^{3} {x'};\qquad47x(1)=48-1 </m>49</li>50<li>Solution: <m>x^{4} - 2 \, t x = 3</m></li>51</ul>52</li>53</ol>54</statement>55<answer>56<ol>57<li>58<ul>59<li>ODE: <m>-x {y'} = -5 \, x^{4} - 3 \, y</m></li>60<li>IV(s): <m>61y(-1)=36263</m></li>64<li>Order: 1st</li>65<li>Independent variable: <m>x</m></li>66<li>Dependent variable: <m>y</m></li>67<li>The solution <m>y = 5 \, x^{4} + 2 \, x^{3}</m> is explicit.</li>68</ul>69</li>70<li>71<ul>72<li>ODE: <m>{\frac{d^2y}{dt^2}} = -5 \, y + 6 \, {\frac{dy}{dt}}</m></li>73<li>IV(s): <m>74y(0)=375,y'(0)=376</m></li>77<li>Order: 2nd</li>78<li>Independent variable: <m>t</m></li>79<li>Dependent variable: <m>y</m></li>80<li>The solution <m>y = 3 \, e^{t}</m> is explicit.</li>81</ul>82</li>83<li>84<ul>85<li>ODE: <m>2 \, t {x'} + 2 \, x = 4 \, x^{3} {x'}</m></li>86<li>IV(s): <m>87x(1)=-18889</m></li>90<li>Order: 1st</li>91<li>Independent variable: <m>t</m></li>92<li>Dependent variable: <m>x</m></li>93<li>The solution <m>x^{4} - 2 \, t x = 3</m> is implicit.</li>94</ul>95</li>96</ol>97</answer>98</exercise>99100101