Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
3776 views
ubuntu2004
1
<exercise checkit-seed="0000" checkit-slug="AA4" checkit-title="Existence/uniqueness IVP Theorems">
2
<statement>
3
<p>
4
Explain how to use an appropriate Existence and Uniqueness Theorem to determine
5
the largest possible domain guaranteed for a unique solution to each IVP.
6
</p>
7
<ol>
8
<li>
9
<m>
10
{\left(t + 3 \, {y} - 11\right)}^{7} + {\left({y'} + 3\right)}^{5} = 0;\qquad
11
{y}(6)=2
12
13
14
</m>
15
</li>
16
<li>
17
<m>
18
-e^{\left(2 \, t\right)} = {\left(t + 5\right)} {\left(t - 5\right)} y + {\left(t - 2\right)} {y''} e^{t} - 2 \, {y'};\qquad
19
y(6)=-1
20
,y'(6)=-6
21
22
</m>
23
</li>
24
</ol>
25
</statement>
26
<answer>
27
<ol>
28
<li>
29
By the First Order ODE Existence and Uniqueness Theorem, the IVP has
30
a unique solution defined for all real numbers.
31
</li>
32
<li>
33
By the Linear ODE Existence and Uniqueness Theorem, the IVP has
34
a unique solution defined on the interval <m>(2,+\infty)</m>.
35
</li>
36
</ol>
37
</answer>
38
</exercise>
39
40