ubuntu2004
<exercise checkit-seed="0006" checkit-slug="AA4" checkit-title="Existence/uniqueness IVP Theorems">1<statement>2<p>3Explain how to use an appropriate Existence and Uniqueness Theorem to determine4the largest possible domain guaranteed for a unique solution to each IVP.5</p>6<ol>7<li>8<m>9-e^{t} = {\left(t + 4\right)} {\left(t - 6\right)} {y'''} + {\left(t - 1\right)} y e^{t} - 5 \, {y''};\qquad10y(5)=811,y'(5)=612,y''(5)=-213</m>14</li>15<li>16<m>17-{\left({y'} - 2\right)}^{5} + {\left(t + 2 \, {y} + 10\right)}^{2} = 0;\qquad18{y}(-4)=-2192021</m>22</li>23</ol>24</statement>25<answer>26<ol>27<li>28By the Linear ODE Existence and Uniqueness Theorem, the IVP has29a unique solution defined on the interval <m>(-4,6)</m>.30</li>31<li>32By the First Order ODE Existence and Uniqueness Theorem, the IVP has33a unique solution defined nearby the initial value.34</li>35</ol>36</answer>37</exercise>383940