ubuntu2004
<exercise checkit-seed="0000" checkit-slug="A4" checkit-title="Injectivity and surjectivity">1<statement>2<p>3Let <m>T:\mathbb{R}^3 \to \mathbb{R}^3</m> be the linear transformation given by the standard matrix4<m>\left[\begin{array}{ccc}5-1 & -1 & -1 \\6-2 & -3 & 3 \\72 & 3 & -28\end{array}\right]</m>.9</p>10<ol>11<li><p>Explain why <m>T</m> is or is not injective.</p></li>12<li><p>Explain why <m>T</m> is or is not surjective.</p></li>13</ol>14</statement>15<answer>16<p><me>\operatorname{RREF}\left[\begin{array}{ccc}17-1 & -1 & -1 \\18-2 & -3 & 3 \\192 & 3 & -220\end{array}\right]=\left[\begin{array}{ccc}211 & 0 & 0 \\220 & 1 & 0 \\230 & 0 & 124\end{array}\right]</me></p>25<ol>26<li>27<p><m>T</m> is injective.</p>28</li>29<li>30<p><m>T</m> is surjective.</p>31</li>32</ol>33</answer>34</exercise>353637