ubuntu2004
<exercise checkit-seed="0004" checkit-slug="A4" checkit-title="Injectivity and surjectivity">1<statement>2<p>3Let <m>T:\mathbb{R}^4 \to \mathbb{R}^4</m> be the linear transformation given by the standard matrix4<m>\left[\begin{array}{cccc}51 & 1 & 1 & 1 \\64 & 5 & 7 & 2 \\71 & 4 & 10 & -4 \\81 & 2 & 4 & -39\end{array}\right]</m>.10</p>11<ol>12<li><p>Explain why <m>T</m> is or is not injective.</p></li>13<li><p>Explain why <m>T</m> is or is not surjective.</p></li>14</ol>15</statement>16<answer>17<p><me>\operatorname{RREF}\left[\begin{array}{cccc}181 & 1 & 1 & 1 \\194 & 5 & 7 & 2 \\201 & 4 & 10 & -4 \\211 & 2 & 4 & -322\end{array}\right]=\left[\begin{array}{cccc}231 & 0 & -2 & 0 \\240 & 1 & 3 & 0 \\250 & 0 & 0 & 1 \\260 & 0 & 0 & 027\end{array}\right]</me></p>28<ol>29<li>30<p><m>T</m> is not injective.</p>31</li>32<li>33<p><m>T</m> is not surjective.</p>34</li>35</ol>36</answer>37</exercise>383940