ubuntu2004
<exercise checkit-seed="0006" checkit-slug="A4" checkit-title="Injectivity and surjectivity">1<statement>2<p>3Let <m>T:\mathbb{R}^5 \to \mathbb{R}^5</m> be the linear transformation given by the standard matrix4<m>\left[\begin{array}{ccccc}5-2 & 1 & -5 & -3 & 3 \\60 & 1 & -3 & -1 & 1 \\71 & -1 & 4 & -3 & -2 \\81 & -1 & 4 & 1 & -2 \\91 & -2 & 7 & 1 & -310\end{array}\right]</m>.11</p>12<ol>13<li><p>Explain why <m>T</m> is or is not injective.</p></li>14<li><p>Explain why <m>T</m> is or is not surjective.</p></li>15</ol>16</statement>17<answer>18<p><me>\operatorname{RREF}\left[\begin{array}{ccccc}19-2 & 1 & -5 & -3 & 3 \\200 & 1 & -3 & -1 & 1 \\211 & -1 & 4 & -3 & -2 \\221 & -1 & 4 & 1 & -2 \\231 & -2 & 7 & 1 & -324\end{array}\right]=\left[\begin{array}{ccccc}251 & 0 & 1 & 0 & -1 \\260 & 1 & -3 & 0 & 1 \\270 & 0 & 0 & 1 & 0 \\280 & 0 & 0 & 0 & 0 \\290 & 0 & 0 & 0 & 030\end{array}\right]</me></p>31<ol>32<li>33<p><m>T</m> is not injective.</p>34</li>35<li>36<p><m>T</m> is not surjective.</p>37</li>38</ol>39</answer>40</exercise>414243