Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
3782 views
ubuntu2004
1
<exercise checkit-seed="0001" checkit-slug="A3" checkit-title="Image and kernel">
2
<statement>
3
<p>
4
Let <m>T:\mathbb{R}^4 \to \mathbb{R}^3</m>
5
be the linear transformation given by
6
<me>T\left( \left[\begin{array}{c}
7
x_{1} \\
8
x_{2} \\
9
x_{3} \\
10
x_{4}
11
\end{array}\right] \right) = \left[\begin{array}{c}
12
x_{1} + x_{2} - x_{3} + 3 \, x_{4} \\
13
-x_{1} - 2 \, x_{3} - x_{4} \\
14
2 \, x_{1} - x_{2} + 7 \, x_{3} + x_{4}
15
\end{array}\right].</me>
16
</p>
17
<ol>
18
<li>Explain how to find the image of <m>T</m> and the kernel of <m>T</m>.</li>
19
<li>Explain how to find a basis of the image of <m>T</m> and a basis of the kernel of <m>T</m>.</li>
20
<li>Explain how to find the rank and nullity of <m>T</m>, and why the rank-nullity theorem holds for <m>T</m>.</li>
21
</ol>
22
</statement>
23
<answer>
24
<p><me>\operatorname{RREF}\left[\begin{array}{cccc}
25
1 &amp; 1 &amp; -1 &amp; 3 \\
26
-1 &amp; 0 &amp; -2 &amp; -1 \\
27
2 &amp; -1 &amp; 7 &amp; 1
28
\end{array}\right]=\left[\begin{array}{cccc}
29
1 &amp; 0 &amp; 2 &amp; 0 \\
30
0 &amp; 1 &amp; -3 &amp; 0 \\
31
0 &amp; 0 &amp; 0 &amp; 1
32
\end{array}\right]</me></p>
33
<ol>
34
<li>
35
<p>
36
<m>\operatorname{Im}\ T = \left\{ \left[\begin{array}{c}
37
a + b + 3 \, c \\
38
-a - c \\
39
2 \, a - b + c
40
\end{array}\right] \middle|\,a,b,c\in\mathbb{R}\right\}</m> and
41
<m>\operatorname{ker}\ T = \left\{ \left[\begin{array}{c}
42
-2 \, a \\
43
3 \, a \\
44
a \\
45
0
46
\end{array}\right] \middle|\,a\in\mathbb{R}\right\}</m>
47
</p>
48
</li>
49
<li>
50
<p>
51
A basis of <m>\operatorname{Im}\ T</m> is <m>\left\{ \left[\begin{array}{c}
52
1 \\
53
-1 \\
54
2
55
\end{array}\right] , \left[\begin{array}{c}
56
1 \\
57
0 \\
58
-1
59
\end{array}\right] , \left[\begin{array}{c}
60
3 \\
61
-1 \\
62
1
63
\end{array}\right] \right\}</m>.
64
A basis of <m>\operatorname{ker}\ T</m> is <m>\left\{ \left[\begin{array}{c}
65
-2 \\
66
3 \\
67
1 \\
68
0
69
\end{array}\right] \right\}</m>.
70
</p>
71
</li>
72
<li>
73
<p>
74
The rank of <m>T</m> is <m>3</m>, the nullity of <m>T</m> is <m>1</m>,
75
and the dimension of the domain of <m>T</m> is <m>4</m>. The rank-nullity theorem asserts that
76
<m>3+1=4</m>, which we see to be true.
77
</p>
78
</li>
79
</ol>
80
</answer>
81
</exercise>
82
83