ubuntu2004
<exercise checkit-seed="0009" checkit-slug="A4" checkit-title="Injectivity and surjectivity">1<statement>2<p>3Let <m>T:\mathbb{R}^5 \to \mathbb{R}^4</m> be the linear transformation given by the standard matrix4<m>\left[\begin{array}{ccccc}51 & 3 & -2 & 0 & 3 \\60 & 0 & 0 & 1 & 5 \\71 & 3 & -2 & 0 & 4 \\83 & 9 & -6 & -2 & 49\end{array}\right]</m>.10</p>11<ol>12<li><p>Explain why <m>T</m> is or is not injective.</p></li>13<li><p>Explain why <m>T</m> is or is not surjective.</p></li>14</ol>15</statement>16<answer>17<p><me>\operatorname{RREF}\left[\begin{array}{ccccc}181 & 3 & -2 & 0 & 3 \\190 & 0 & 0 & 1 & 5 \\201 & 3 & -2 & 0 & 4 \\213 & 9 & -6 & -2 & 422\end{array}\right]=\left[\begin{array}{ccccc}231 & 3 & -2 & 0 & 0 \\240 & 0 & 0 & 1 & 0 \\250 & 0 & 0 & 0 & 1 \\260 & 0 & 0 & 0 & 027\end{array}\right]</me></p>28<ol>29<li>30<p><m>T</m> is not injective.</p>31</li>32<li>33<p><m>T</m> is not surjective.</p>34</li>35</ol>36</answer>37</exercise>383940