Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
3776 views
ubuntu2004
1
<exercise checkit-seed="0003" checkit-slug="A1" checkit-title="Linear maps">
2
<statement>
3
<p>
4
Consider the following maps of polynomials <m>S:\mathcal{P}\rightarrow\mathcal{P}</m>
5
and <m>T:\mathcal{P}\rightarrow\mathcal{P}</m> defined by
6
<me>
7
S(g(x))=
8
-3 \, g\left(x^{3}\right) + g'\left(x\right)
9
\hspace{1em} \text{and} \hspace{1em}
10
T(g(x))=
11
-2 \, g\left(x\right) g'\left(x\right) + 2 \, g'\left(-2\right)
12
</me>
13
Explain why one these maps is a linear transformation and why the other map is not.
14
</p>
15
</statement>
16
<answer>
17
<p><m>S</m> is linear and <m>T</m> is not linear.</p>
18
</answer>
19
</exercise>
20
21