<exercise checkit-seed="0009" checkit-slug="A1" checkit-title="Linear maps">
<statement>
<p>
Consider the following maps of polynomials <m>S:\mathcal{P}\rightarrow\mathcal{P}</m>
and <m>T:\mathcal{P}\rightarrow\mathcal{P}</m> defined by
<me>
S(h(x))=
5 \, x^{2} h\left(x\right) - h'\left(x\right)
\hspace{1em} \text{and} \hspace{1em}
T(h(x))=
-2 \, h\left(x\right)^{3} - 4 \, h\left(2\right)
</me>
Explain why one these maps is a linear transformation and why the other map is not.
</p>
</statement>
<answer>
<p><m>S</m> is linear and <m>T</m> is not linear.</p>
</answer>
</exercise>