<exercise checkit-seed="0000" checkit-slug="E1" checkit-title="Linear systems, vector equations, and augmented matrices">
<statement>
<p>Consider the vector equation.</p>
<me>x_{1} \left[\begin{array}{c}
4 \\
-3 \\
3
\end{array}\right] + x_{2} \left[\begin{array}{c}
4 \\
-3 \\
3
\end{array}\right] + x_{3} \left[\begin{array}{c}
3 \\
1 \\
3
\end{array}\right] + x_{4} \left[\begin{array}{c}
18 \\
-7 \\
15
\end{array}\right] = \left[\begin{array}{c}
-11 \\
5 \\
-9
\end{array}\right]</me>
<ol>
<li> Write a system of scalar equations corresponding to this vector equation. </li>
<li> Write an augmented matrix corresponding to this vector equation. </li>
</ol>
</statement>
<answer>
<ol>
<li><me>\begin{matrix}
4 \, x_{1} & + & 4 \, x_{2} & + & 3 \, x_{3} & + & 18 \, x_{4} & = & -11 \\
-3 \, x_{1} & - & 3 \, x_{2} & + & x_{3} & - & 7 \, x_{4} & = & 5 \\
3 \, x_{1} & + & 3 \, x_{2} & + & 3 \, x_{3} & + & 15 \, x_{4} & = & -9 \\
\end{matrix}</me></li>
<li><me>\left[\begin{array}{cccc|c}
4 & 4 & 3 & 18 & -11 \\
-3 & -3 & 1 & -7 & 5 \\
3 & 3 & 3 & 15 & -9
\end{array}\right]</me></li>
</ol>
</answer>
</exercise>