<?xml version="1.0" encoding="utf-8"?>
<item xmlns:d2l_2p0="http://desire2learn.com/xsd/d2lcp_v2p0">
<itemmetadata>
<qtimetadata>
<qti_metadatafield>
<fieldlabel>qmd_questiontype</fieldlabel>
<fieldentry>Long Answer</fieldentry>
</qti_metadatafield>
<qti_metadatafield>
<fieldlabel>qmd_weighting</fieldlabel>
<fieldentry>1.000000000</fieldentry>
</qti_metadatafield>
</qtimetadata>
</itemmetadata>
<itemproc_extension>
<d2l_2p0:difficulty>1</d2l_2p0:difficulty>
<d2l_2p0:isbonus>no</d2l_2p0:isbonus>
<d2l_2p0:ismandatory>no</d2l_2p0:ismandatory>
</itemproc_extension>
<presentation>
<flow>
<material>
<mattext texttype="text/html"><p>Explain how to find the
general solution to the given ODE, and the particular solution
that satisfies the given initial value.</p>
<p><math title=""
xmlns="http://www.w3.org/1998/Math/MathML"
display="block"><semantics><mstyle><mn>5</mn><mspace
width="thinmathspace" /><mrow
class="MJX-TeXAtom-ORD"><msup><mi>y</mi><mo>&#x2032;</mo></msup></mrow><mo>&#x2212;<!--
− --></mo><mn>15</mn><mspace
width="thinmathspace" /><mrow
class="MJX-TeXAtom-ORD"><mi>y</mi></mrow><mo>=</mo><mn>0</mn><mo>,</mo><mspace
width="1em" /><mi>y</mi><mrow
class="MJX-TeXAtom-ORD"><mo maxsize="1.2em"
minsize="1.2em">(</mo></mrow><mi>log</mi><mo>&#x2061;<!--
--></mo><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow
class="MJX-TeXAtom-ORD"><mo maxsize="1.2em"
minsize="1.2em">)</mo></mrow><mo>=</mo><mo>&#x2212;<!--
−
--></mo><mn>54</mn></mstyle><annotation
encoding="latex">{"version":"1.1","math":"5 \, {y'} - 15 \,
{y} = 0,\hspace{1em}
y\big(\log\left(3\right)\big)=-54"}</annotation></semantics></math></p></mattext>
</material>
<response_extension>
<d2l_2p0:has_signed_comments>no</d2l_2p0:has_signed_comments>
<d2l_2p0:has_htmleditor>yes</d2l_2p0:has_htmleditor>
<d2l_2p0:has_fileupload>yes</d2l_2p0:has_fileupload>
</response_extension>
<response_str
rcardinality="Multiple">
<render_fib columns="100" fibtype="String" prompt="Box"
rows="15">
<response_label>
<material>
<mattext texttype="text/plain" />
</material>
</response_label>
</render_fib>
</response_str>
</flow>
</presentation>
<answer_key>
<answer_key_material>
<flow_mat>
<material>
<mattext texttype="text/html"><p><math title=""
xmlns="http://www.w3.org/1998/Math/MathML"
display="block"><semantics><mstyle><mtable></mtable></mstyle><annotation
encoding="latex">{"version":"1.1","math":"{y} = k e^{\left(3
\,
t\right)}"}</annotation></semantics></math><math
title="" xmlns="http://www.w3.org/1998/Math/MathML"
display="block"><semantics><mstyle><mrow
class="MJX-TeXAtom-ORD"><mi>y</mi></mrow><mo>=</mo><mi>k</mi><msup><mi>e</mi><mrow
class="MJX-TeXAtom-ORD"><mrow><mo>(</mo><mn>3</mn><mspace
width="thinmathspace"
/><mi>t</mi><mo>)</mo></mrow></mrow></msup></mstyle><annotation
encoding="latex">{"version":"1.1","math":"{y} = k e^{\left(3
\,
t\right)}"}</annotation></semantics></math></p>
<p><math title=""
xmlns="http://www.w3.org/1998/Math/MathML"
display="block"><semantics><mstyle><mrow
class="MJX-TeXAtom-ORD"><mi>y</mi></mrow><mo>=</mo><mo>&#x2212;<!--
− --></mo><mn>2</mn><mspace
width="thinmathspace"
/><msup><mi>e</mi><mrow
class="MJX-TeXAtom-ORD"><mrow><mo>(</mo><mn>3</mn><mspace
width="thinmathspace"
/><mi>t</mi><mo>)</mo></mrow></mrow></msup></mstyle><annotation
encoding="latex">{"version":"1.1","math":"{y} = -2 \,
e^{\left(3 \,
t\right)}"}</annotation></semantics></math></p></mattext>
</material>
</flow_mat>
</answer_key_material>
</answer_key>
</item>