Contact Us!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

| Download
Views: 236
Image: ubuntu2204
Kernel: SageMath 10.3

Green's Theorem in the Plane

Green's Theorem allows us to convert the line integral (closed curve CC and nonconservative field F\vec F) into a double integral over the region enclosed by CC.

We introduce two new ideas for Green's theorem: circulation density around an axis perpendicular to the plane and divergence (or flux density).

Spin around an axis: the k\vec k-component of curl

Top and Bottom:

(M(x,y)M(x,y+Δy))Δx(MyΔy)Δx\begin{align*} &(M(x,y)-M(x, y+\Delta y))\Delta x\\ &\approx -({\partial M\over\partial y}\Delta y)\Delta x \end{align*}

Left and Right:

(N(x+Δx,y)N(x,y))Δy(NxΔx)Δy\begin{align*} &(N(x+\Delta x,y)-N(x, y))\Delta y\\ &\approx ({\partial N\over\partial x}\Delta x)\Delta y \end{align*}

Definition The circulation density of a vector field F=Mi+Nj\vec F = M \vec i + N \vec j at the point (x,y)(x, y) is the scalar expression NxMy.{\partial N\over \partial x}-{\partial M\over \partial y}. It is also called the k\vec k-component of the curl (we will introduce curl later), denoted by (curl F)k\vec F) \cdot \vec k.

Example: The vector fields represent the velocity of a gas flowing in the xyxy-plane. Find their circulation densities and interpret their physical meanings.

  • (a) Uniform expansion or compression: F(x,y)=cxi+cyj\vec F(x, y) = cx \vec i + cy \vec j

  • (b) Uniform rotation: F(x,y)=cyi+cxj\vec F(x, y) = -cy\vec i + cx\vec j

  • (c) Shearing flow: F(x,y)=yi\vec F(x, y) = y\vec i

  • (d) Whirlpool effect: F(x,y)=yx2+y2i+xx2+y2j\vec F(x, y) = {-y\over x^2+y^2}\vec i + {x\over x^2+y^2}\vec j

Green's theorem (circulation-curl)

CF(x,y)dr\oint_C\vec F(x,y)\cdot d\vec r

for the line integral when the simple closed curve CC is traversed counterclockwise, with its positive orientation. (the region is always to the left)

Theorem (Thm 4-Green's Theorem (Circulation-Curl /Tangential Form))

Let CC be a piecewise smooth, simple closed curve enclosing a region RR in the plane. Let F=Mi+Nj\vec F = M \vec i + N \vec j be a vector field with MM and NN having continuous first partial derivatives in an open region containing RR. Then the counterclockwise circulation of F\vec F around CC equals the double integral of (curl F)k\vec F)\cdot \vec k over RR. CFTds=CFdr=CMdx+Ndy=R(NxMy)dxdy\oint_C\vec F\cdot \vec T ds=\oint_C\vec F\cdot d\vec r=\oint_CMdx+Ndy=\iint_R\left({\partial N\over \partial x}-{\partial M\over\partial y}\right)dxdy

Divergence

Top and Bottom:

(N(x,y+Δy)N(x,y))Δx(NyΔy)Δx\begin{align*} &(N(x,y+\Delta y)-N(x, y))\Delta x\\ &\approx ({\partial N\over\partial y}\Delta y)\Delta x \end{align*}

Left and Right:

(M(x+Δx,y)M(x,y))Δy(MxΔx)Δy\begin{align*} &(M(x+\Delta x,y)-M(x, y))\Delta y\\ &\approx ({\partial M\over\partial x}\Delta x)\Delta y \end{align*}

Definition The divergence (flux density) of a vector field F=Mi+Nj\vec F = M \vec i + N \vec j at the point (x,y)(x, y) is the scalar expression divF=Mx+Ny.\mbox{div}\vec F={\partial M\over \partial x}+{\partial N\over \partial y}.

Example: Find the divergence and interpret what it means for each vector field representing the velocity of a gas flowing in the xyxy plane.

  • (a) Uniform expansion or compression: F(x,y)=cxi+cyj\vec F(x, y) = cx \vec i + cy \vec j

  • (b) Uniform rotation: F(x,y)=cyi+cxj\vec F(x, y) = -cy\vec i + cx\vec j

  • (c) Shearing flow: F(x,y)=yi\vec F(x, y) = y\vec i

  • (d) Whirlpool effect: F(x,y)=yx2+y2i+xx2+y2j\vec F(x, y) = {-y\over x^2+y^2}\vec i + {x\over x^2+y^2}\vec j

Green's theorem (flux-divergence)

Theorem (Green’s Theorem (Flux-Divergence or Normal Form)) Let CC be a piecewise smooth, simple closed curve enclosing a region RR in the plane. Let F=Mi+Nj\vec F = M \vec i + N \vec j be a vector field with MM and NN having continuous first partial derivatives in an open region containing RR. Then, the outward flux of F\vec F around CC equals the double integral of div F\vec F over RR. CFnds=CMdyNdx=R(Mx+Ny)dxdy.\oint_C\vec F\cdot \vec n ds=\oint_CMdy-Ndx=\iint_R\left({\partial M\over \partial x}+{\partial N\over\partial y}\right)dxdy.

Green's theorem: summary

circulation-curl CFdr=CMdx+Ndy=R(NxMy)dxdy\oint_C\vec F\cdot d\vec r=\oint_CMdx+Ndy=\iint_R\left({\partial N\over \partial x}-{\partial M\over\partial y}\right)dxdyflux-divergence CFnds=CMdyNdx=R(Mx+Ny)dxdy\oint_C\vec F\cdot \vec n ds=\oint_CMdy-Ndx=\iint_R\left({\partial M\over \partial x}+{\partial N\over\partial y}\right)dxdy

Example: Verify both forms of Green's theorem for the vector field F(x,y)=(xy)i+xj\vec F(x,y)=(x-y)\vec i+x\vec jand the region RR bounded by the unit circle C: r(t)=(cost)i+(sint)j, 0t2π.C:~\vec r(t)=(\cos t)\vec i+(\sin t)\vec j,~0\leq t\leq 2\pi.

Solution:

CFdr=02π(costsint)(sint)+costcostdt=2πR(NxMy)dxdy=R(1+1)dxdy=2πCFnds=02π(costsint)(cost)+costsintdt=πR(Mx+Ny)dxdy=R1dxdy=π\begin{align*} \oint_C\vec F\cdot d\vec r=&\int_0^{2\pi}(\cos t-\sin t)(-\sin t)+\cos t\cos t dt=2\pi\\ \iint_R\left({\partial N\over \partial x}-{\partial M\over\partial y}\right)dxdy=&\iint_R\left(1+1\right)dxdy=2\pi\\ \oint_C\vec F\cdot\vec n ds=&\int_0^{2\pi}(\cos t-\sin t)(\cos t)+\cos t\sin t dt=\pi\\ \iint_R\left({\partial M\over \partial x}+{\partial N\over\partial y}\right)dxdy=&\iint_R1dxdy=\pi \end{align*}
reset() var('x, y, t') r(t) = vector((cos(t), sin(t))) show('r(t) =', r(t), 'for 0 <= t <= 2*pi') F(x,y) = vector((x-y, x)) # Note that the index starts at 0. (dx,dy) = diff(r,t) nds = vector((dy,-dx)) #Get the normal vector by swapping the order and changing the sign. res = integral(F(r(t)[0],r(t)[1]).dot_product(nds), t, 0, 2*pi) show('The flux over C is ', res.full_simplify(), ' and the divergence is ', integral(F.div((x,y)), y, -sqrt(1-x^2), sqrt(1-x^2)).integral(x, -1, 1)) show(F.curl((x,y))) res = integral(F(r(t)[0],r(t)[1]).dot_product(diff(r,t)), t, 0, 2*pi) show('The circulation over C is ', res.full_simplify(), ' and the divergence is ', integral(F.curl((x,y)), y, -sqrt(1-x^2), sqrt(1-x^2)).integral(x, -1, 1))

r(t) =(cos(t),sin(t))for 0 <= t <= 2*pi\displaystyle \verb|r(t)|\verb| |\verb|=| \left(\cos\left(t\right),\,\sin\left(t\right)\right) \verb|for|\verb| |\verb|0|\verb| |\verb|<=|\verb| |\verb|t|\verb| |\verb|<=|\verb| |\verb|2*pi|

The flux over C isπ and the divergence isπ\displaystyle \verb|The|\verb| |\verb|flux|\verb| |\verb|over|\verb| |\verb|C|\verb| |\verb|is| \pi \verb| |\verb|and|\verb| |\verb|the|\verb| |\verb|divergence|\verb| |\verb|is| \pi

(x,y)  2\displaystyle \left( x, y \right) \ {\mapsto} \ 2

The circulation over C is2π and the divergence is2π\displaystyle \verb|The|\verb| |\verb|circulation|\verb| |\verb|over|\verb| |\verb|C|\verb| |\verb|is| 2 \, \pi \verb| |\verb|and|\verb| |\verb|the|\verb| |\verb|divergence|\verb| |\verb|is| 2 \, \pi

Using Green's theorem to evaluate line integrals

Example: Evaluate the line integral Cxydyy2dx\oint_Cxydy-y^2dx where CC is the square cut from the first quadrant by the lines x=1x=1 and y=1y=1.

Solution:

Let M=xyM=xy, N=y2N=y^2 CMdyNdx=CFnds=0101(y+2y)dxdy=32\begin{align*} \oint_CMdy-Ndx=\oint_C\vec F\cdot\vec n ds=\int_0^1\int_0^1 (y+2y)dxdy={3\over2} \end{align*} Let M=y2M=-y^2, N=xyN=xy CNdy+Mdx=CFdr=0101(y+2y)dxdy=32\begin{align*} \oint_CNdy+Mdx=\oint_C\vec F\cdot d\vec r=\int_0^1\int_0^1 (y+2y)dxdy={3\over2} \end{align*}

Example: Calculate the outward flux of the vector field F(x,y)=2exyi+y3j\vec F(x, y) = 2e^{xy} \vec i + y^3 \vec j across the square bounded by the lines x=±1x = \pm1 and y=±1y = \pm1.

Solution:

CFnds=1111(2exyy+3y2)dxdy=11(2exy+3xy2)11dy=11(2ey2ey+6y2)dy=(2ey+2ey+2y3)11=4\begin{align*} \oint_C\vec F\cdot\vec n ds=&\int_{-1}^1\int_{-1}^1 (2e^{xy}y+3y^2) dxdy=\int_{-1}^1 (2e^{xy}+3xy^2)\Big|_{-1}^1 dy\\ =&\int_{-1}^1 (2e^{y}-2e^{-y}+6y^2) dy=(2e^y+2e^{-y}+2y^3)\Big|_{-1}^1=4 \end{align*}

Proof of Green's theorem on special regions

We prove the components with MM only, and the part with NN can be proved in a similar way.

abf1(x)f2(x)Mydydx=abM(x,f2(x))M(x,f1(x))dx=baM(x,f2(x))dxabM(x,f1(x))dx=C2MdxC1Mdx\begin{align*} &\int_a^b \int_{f_1(x)}^{f_2(x)}{\partial M\over \partial y}dydx\\ =&\int_a^b M(x,f_2(x))-M(x,f_1(x))dx\\ =&-\int_b^a M(x,f_2(x))dx-\int_a^bM(x,f_1(x))dx\\ =&-\int_{C_2} Mdx-\int_{C_1}Mdx \end{align*}