CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

| Download

5D Kerr-AdS spacetime with a Nambu-Goto string in AdS coordinates

Project: KerrAdS
Views: 375
Kernel: SageMath 9.3

5D Kerr-AdS spacetime with a Nambu-Goto string

Case a = b with global AdS coordinates

This SageMath notebook is relative to the article Holographic drag force in 5d Kerr-AdS black hole by Irina Ya. Aref'eva, Anastasia A. Golubtsova and Eric Gourgoulhon, arXiv:2004.12984.

The involved differential geometry computations are based on tools developed through the SageManifolds project.

NB: a version of SageMath at least equal to 8.2 is required to run this notebook:

version()
'SageMath version 9.3, Release Date: 2021-05-09'

First we set up the notebook to display mathematical objects using LaTeX rendering:

%display latex

Since some computations are quite long, we ask for running them in parallel on 8 cores:

Parallelism().set(nproc=1) # only nproc=1 works on CoCalc

Spacetime manifold

We declare the Kerr-AdS spacetime as a 5-dimensional Lorentzian manifold:

M = Manifold(5, 'M', r'\mathcal{M}', structure='Lorentzian', metric_name='G') print(M)
5-dimensional Lorentzian manifold M

Let us define Boyer-Lindquist-type coordinates (rational polynomial version) on M\mathcal{M}, via the method chart(), the argument of which is a string expressing the coordinates names, their ranges (the default is (,+)(-\infty,+\infty)) and their LaTeX symbols:

BL.<t,r,mu,ph,ps> = M.chart(r't r:(0,+oo) mu:(0,1):\mu ph:(0,2*pi):\phi ps:(0,2*pi):\psi') BL
(M,(t,r,μ,ϕ,ψ))\renewcommand{\Bold}[1]{\mathbf{#1}}\left(\mathcal{M},(t, r, {\mu}, {\phi}, {\psi})\right)

The coordinate μ\mu is related to the standard Boyer-Lindquist coordinate θ\theta by μ=cosθ \mu = \cos\theta

The coordinate ranges are

BL.coord_range()
t: (,+);r: (0,+);μ: (0,1);ϕ: (0,2π);ψ: (0,2π)\renewcommand{\Bold}[1]{\mathbf{#1}}t :\ \left( -\infty, +\infty \right) ;\quad r :\ \left( 0 , +\infty \right) ;\quad {\mu} :\ \left( 0 , 1 \right) ;\quad {\phi} :\ \left( 0 , 2 \, \pi \right) ;\quad {\psi} :\ \left( 0 , 2 \, \pi \right)

Note that contrary to the 4-dimensional case, the range of μ\mu is (0,1)(0,1) only (cf. Sec. 1.2 of R.C. Myers, arXiv:1111.1903 or Sec. 2 of G.W. Gibbons, H. Lüb, Don N. Page, C.N. Pope, J. Geom. Phys. 53, 49 (2005)). In other words, the range of θ\theta is (0,π2)\left(0, \frac{\pi}{2}\right) only.

Metric tensor

The 4 parameters mm, aa, bb and \ell of the Kerr-AdS spacetime are declared as symbolic variables, aa and bb being the two angular momentum parameters and \ell being related to the cosmological constant by Λ=62\Lambda = - 6 \ell^2:

var('m a b', domain='real')
(m,a,b)\renewcommand{\Bold}[1]{\mathbf{#1}}\left(m, a, b\right)
var('l', domain='real', latex_name=r'\ell')
\renewcommand{\Bold}[1]{\mathbf{#1}}{\ell}
# Particular cases # m = 0 # a = 0 # b = 0 b = a
assume(a > 0) assume(1 - a^2*l^2 > 0)

Some auxiliary functions:

keep_Delta = False # change to False to provide explicit expression for Delta_r, Xi_a, etc...
sig = (1 + r^2*l^2)/r^2 costh2 = mu^2 sinth2 = 1 - mu^2 rho2 = r^2 + a^2*mu^2 + b^2*sinth2 if keep_Delta: Delta_r = var('Delta_r', latex_name=r'\Delta_r', domain='real') Delta_th = var('Delta_th', latex_name=r'\Delta_\theta', domain='real') if a == b: Xi_a = var('Xi', latex_name=r'\Xi', domain='real') Xi_b = Xi_a else: Xi_a = var('Xi_a', latex_name=r'\Xi_a', domain='real') Xi_b = var('Xi_b', latex_name=r'\Xi_b', domain='real') #Delta_th = 1 - a^2*l^2*mu^2 - b^2*l^2*sinth2 Xi_a = 1 - a^2*l^2 Xi_b = 1 - b^2*l^2 else: Delta_r = (r^2+a^2)*(r^2+b^2)*sig - 2*m Delta_th = 1 - a^2*l^2*mu^2 - b^2*l^2*sinth2 Xi_a = 1 - a^2*l^2 Xi_b = 1 - b^2*l^2

The metric is set by its components in the coordinate frame associated with the Boyer-Lindquist-type coordinates, which is the current manifold's default frame. These components can be deduced from Eq. (5.22) of the article S.W. Hawking, C.J. Hunter & M.M. Taylor-Robinson, Phys. Rev. D 59, 064005 (1999) (the check of agreement with this equation is performed below):

G = M.metric() tmp = 1/rho2*( -Delta_r + Delta_th*(a^2*sinth2 + b^2*mu^2) + a^2*b^2*sig ) G[0,0] = tmp.simplify_full() tmp = a*sinth2/(rho2*Xi_a)*( Delta_r - (r^2+a^2)*(Delta_th + b^2*sig) ) G[0,3] = tmp.simplify_full() tmp = b*mu^2/(rho2*Xi_b)*( Delta_r - (r^2+b^2)*(Delta_th + a^2*sig) ) G[0,4] = tmp.simplify_full() G[1,1] = (rho2/Delta_r).simplify_full() G[2,2] = (rho2/Delta_th/(1-mu^2)).simplify_full() tmp = sinth2/(rho2*Xi_a^2)*( - Delta_r*a^2*sinth2 + (r^2+a^2)^2*(Delta_th + sig*b^2*sinth2) ) G[3,3] = tmp.simplify_full() tmp = a*b*sinth2*mu^2/(rho2*Xi_a*Xi_b)*( - Delta_r + sig*(r^2+a^2)*(r^2+b^2) ) G[3,4] = tmp.simplify_full() tmp = mu^2/(rho2*Xi_b^2)*( - Delta_r*b^2*mu^2 + (r^2+b^2)^2*(Delta_th + sig*a^2*mu^2) ) G[4,4] = tmp.simplify_full() G.display()
G=(a42+2r4+(2a22+1)r2+a22ma2+r2)dtdt+(a52(a2μ2a2)r4(a522am)μ22(a32μ2a32)r22ama42+(a221)r2a2)dtdϕ+(2a32μ2r2+a2μ2r4+(a522am)μ2a42+(a221)r2a2)dtdψ+(a2r2+r42r6+(2a22+1)r4+a4+(a42+2a22m)r2)drdr+(a2+r2a22(a221)μ21)dμdμ+(a52(a2μ2a2)r4(a522am)μ22(a32μ2a32)r22ama42+(a221)r2a2)dϕdt+(a622a2mμ4+(a22(a221)μ21)r4a42a2m(a62a44a2m)μ2+2(a42(a42a2)μ2a2)r2a642a42+(a442a22+1)r2+a2)dϕdϕ+(2(a2mμ4a2mμ2)a642a42+(a442a22+1)r2+a2)dϕdψ+(2a32μ2r2+a2μ2r4+(a522am)μ2a42+(a221)r2a2)dψdt+(2(a2mμ4a2mμ2)a642a42+(a442a22+1)r2+a2)dψdϕ+(2a2mμ4(a221)μ2r42(a42a2)μ2r2(a62a4)μ2a642a42+(a442a22+1)r2+a2)dψdψ\renewcommand{\Bold}[1]{\mathbf{#1}}G = \left( -\frac{a^{4} {\ell}^{2} + {\ell}^{2} r^{4} + {\left(2 \, a^{2} {\ell}^{2} + 1\right)} r^{2} + a^{2} - 2 \, m}{a^{2} + r^{2}} \right) \mathrm{d} t\otimes \mathrm{d} t + \left( -\frac{a^{5} {\ell}^{2} - {\left(a {\ell}^{2} {\mu}^{2} - a {\ell}^{2}\right)} r^{4} - {\left(a^{5} {\ell}^{2} - 2 \, a m\right)} {\mu}^{2} - 2 \, {\left(a^{3} {\ell}^{2} {\mu}^{2} - a^{3} {\ell}^{2}\right)} r^{2} - 2 \, a m}{a^{4} {\ell}^{2} + {\left(a^{2} {\ell}^{2} - 1\right)} r^{2} - a^{2}} \right) \mathrm{d} t\otimes \mathrm{d} {\phi} + \left( -\frac{2 \, a^{3} {\ell}^{2} {\mu}^{2} r^{2} + a {\ell}^{2} {\mu}^{2} r^{4} + {\left(a^{5} {\ell}^{2} - 2 \, a m\right)} {\mu}^{2}}{a^{4} {\ell}^{2} + {\left(a^{2} {\ell}^{2} - 1\right)} r^{2} - a^{2}} \right) \mathrm{d} t\otimes \mathrm{d} {\psi} + \left( \frac{a^{2} r^{2} + r^{4}}{{\ell}^{2} r^{6} + {\left(2 \, a^{2} {\ell}^{2} + 1\right)} r^{4} + a^{4} + {\left(a^{4} {\ell}^{2} + 2 \, a^{2} - 2 \, m\right)} r^{2}} \right) \mathrm{d} r\otimes \mathrm{d} r + \left( -\frac{a^{2} + r^{2}}{a^{2} {\ell}^{2} - {\left(a^{2} {\ell}^{2} - 1\right)} {\mu}^{2} - 1} \right) \mathrm{d} {\mu}\otimes \mathrm{d} {\mu} + \left( -\frac{a^{5} {\ell}^{2} - {\left(a {\ell}^{2} {\mu}^{2} - a {\ell}^{2}\right)} r^{4} - {\left(a^{5} {\ell}^{2} - 2 \, a m\right)} {\mu}^{2} - 2 \, {\left(a^{3} {\ell}^{2} {\mu}^{2} - a^{3} {\ell}^{2}\right)} r^{2} - 2 \, a m}{a^{4} {\ell}^{2} + {\left(a^{2} {\ell}^{2} - 1\right)} r^{2} - a^{2}} \right) \mathrm{d} {\phi}\otimes \mathrm{d} t + \left( -\frac{a^{6} {\ell}^{2} - 2 \, a^{2} m {\mu}^{4} + {\left(a^{2} {\ell}^{2} - {\left(a^{2} {\ell}^{2} - 1\right)} {\mu}^{2} - 1\right)} r^{4} - a^{4} - 2 \, a^{2} m - {\left(a^{6} {\ell}^{2} - a^{4} - 4 \, a^{2} m\right)} {\mu}^{2} + 2 \, {\left(a^{4} {\ell}^{2} - {\left(a^{4} {\ell}^{2} - a^{2}\right)} {\mu}^{2} - a^{2}\right)} r^{2}}{a^{6} {\ell}^{4} - 2 \, a^{4} {\ell}^{2} + {\left(a^{4} {\ell}^{4} - 2 \, a^{2} {\ell}^{2} + 1\right)} r^{2} + a^{2}} \right) \mathrm{d} {\phi}\otimes \mathrm{d} {\phi} + \left( -\frac{2 \, {\left(a^{2} m {\mu}^{4} - a^{2} m {\mu}^{2}\right)}}{a^{6} {\ell}^{4} - 2 \, a^{4} {\ell}^{2} + {\left(a^{4} {\ell}^{4} - 2 \, a^{2} {\ell}^{2} + 1\right)} r^{2} + a^{2}} \right) \mathrm{d} {\phi}\otimes \mathrm{d} {\psi} + \left( -\frac{2 \, a^{3} {\ell}^{2} {\mu}^{2} r^{2} + a {\ell}^{2} {\mu}^{2} r^{4} + {\left(a^{5} {\ell}^{2} - 2 \, a m\right)} {\mu}^{2}}{a^{4} {\ell}^{2} + {\left(a^{2} {\ell}^{2} - 1\right)} r^{2} - a^{2}} \right) \mathrm{d} {\psi}\otimes \mathrm{d} t + \left( -\frac{2 \, {\left(a^{2} m {\mu}^{4} - a^{2} m {\mu}^{2}\right)}}{a^{6} {\ell}^{4} - 2 \, a^{4} {\ell}^{2} + {\left(a^{4} {\ell}^{4} - 2 \, a^{2} {\ell}^{2} + 1\right)} r^{2} + a^{2}} \right) \mathrm{d} {\psi}\otimes \mathrm{d} {\phi} + \left( \frac{2 \, a^{2} m {\mu}^{4} - {\left(a^{2} {\ell}^{2} - 1\right)} {\mu}^{2} r^{4} - 2 \, {\left(a^{4} {\ell}^{2} - a^{2}\right)} {\mu}^{2} r^{2} - {\left(a^{6} {\ell}^{2} - a^{4}\right)} {\mu}^{2}}{a^{6} {\ell}^{4} - 2 \, a^{4} {\ell}^{2} + {\left(a^{4} {\ell}^{4} - 2 \, a^{2} {\ell}^{2} + 1\right)} r^{2} + a^{2}} \right) \mathrm{d} {\psi}\otimes \mathrm{d} {\psi}
G.display_comp(only_nonredundant=True)
Gtttt=a42+2r4+(2a22+1)r2+a22ma2+r2Gtϕtϕ=a52(a2μ2a2)r4(a522am)μ22(a32μ2a32)r22ama42+(a221)r2a2Gtψtψ=2a32μ2r2+a2μ2r4+(a522am)μ2a42+(a221)r2a2Grrrr=a2r2+r42r6+(2a22+1)r4+a4+(a42+2a22m)r2Gμμμμ=a2+r2a22(a221)μ21Gϕϕϕϕ=a622a2mμ4+(a22(a221)μ21)r4a42a2m(a62a44a2m)μ2+2(a42(a42a2)μ2a2)r2a642a42+(a442a22+1)r2+a2Gϕψϕψ=2(a2mμ4a2mμ2)a642a42+(a442a22+1)r2+a2Gψψψψ=2a2mμ4(a221)μ2r42(a42a2)μ2r2(a62a4)μ2a642a42+(a442a22+1)r2+a2\renewcommand{\Bold}[1]{\mathbf{#1}}\begin{array}{lcl} G_{ \, t \, t }^{ \phantom{\, t}\phantom{\, t} } & = & -\frac{a^{4} {\ell}^{2} + {\ell}^{2} r^{4} + {\left(2 \, a^{2} {\ell}^{2} + 1\right)} r^{2} + a^{2} - 2 \, m}{a^{2} + r^{2}} \\ G_{ \, t \, {\phi} }^{ \phantom{\, t}\phantom{\, {\phi}} } & = & -\frac{a^{5} {\ell}^{2} - {\left(a {\ell}^{2} {\mu}^{2} - a {\ell}^{2}\right)} r^{4} - {\left(a^{5} {\ell}^{2} - 2 \, a m\right)} {\mu}^{2} - 2 \, {\left(a^{3} {\ell}^{2} {\mu}^{2} - a^{3} {\ell}^{2}\right)} r^{2} - 2 \, a m}{a^{4} {\ell}^{2} + {\left(a^{2} {\ell}^{2} - 1\right)} r^{2} - a^{2}} \\ G_{ \, t \, {\psi} }^{ \phantom{\, t}\phantom{\, {\psi}} } & = & -\frac{2 \, a^{3} {\ell}^{2} {\mu}^{2} r^{2} + a {\ell}^{2} {\mu}^{2} r^{4} + {\left(a^{5} {\ell}^{2} - 2 \, a m\right)} {\mu}^{2}}{a^{4} {\ell}^{2} + {\left(a^{2} {\ell}^{2} - 1\right)} r^{2} - a^{2}} \\ G_{ \, r \, r }^{ \phantom{\, r}\phantom{\, r} } & = & \frac{a^{2} r^{2} + r^{4}}{{\ell}^{2} r^{6} + {\left(2 \, a^{2} {\ell}^{2} + 1\right)} r^{4} + a^{4} + {\left(a^{4} {\ell}^{2} + 2 \, a^{2} - 2 \, m\right)} r^{2}} \\ G_{ \, {\mu} \, {\mu} }^{ \phantom{\, {\mu}}\phantom{\, {\mu}} } & = & -\frac{a^{2} + r^{2}}{a^{2} {\ell}^{2} - {\left(a^{2} {\ell}^{2} - 1\right)} {\mu}^{2} - 1} \\ G_{ \, {\phi} \, {\phi} }^{ \phantom{\, {\phi}}\phantom{\, {\phi}} } & = & -\frac{a^{6} {\ell}^{2} - 2 \, a^{2} m {\mu}^{4} + {\left(a^{2} {\ell}^{2} - {\left(a^{2} {\ell}^{2} - 1\right)} {\mu}^{2} - 1\right)} r^{4} - a^{4} - 2 \, a^{2} m - {\left(a^{6} {\ell}^{2} - a^{4} - 4 \, a^{2} m\right)} {\mu}^{2} + 2 \, {\left(a^{4} {\ell}^{2} - {\left(a^{4} {\ell}^{2} - a^{2}\right)} {\mu}^{2} - a^{2}\right)} r^{2}}{a^{6} {\ell}^{4} - 2 \, a^{4} {\ell}^{2} + {\left(a^{4} {\ell}^{4} - 2 \, a^{2} {\ell}^{2} + 1\right)} r^{2} + a^{2}} \\ G_{ \, {\phi} \, {\psi} }^{ \phantom{\, {\phi}}\phantom{\, {\psi}} } & = & -\frac{2 \, {\left(a^{2} m {\mu}^{4} - a^{2} m {\mu}^{2}\right)}}{a^{6} {\ell}^{4} - 2 \, a^{4} {\ell}^{2} + {\left(a^{4} {\ell}^{4} - 2 \, a^{2} {\ell}^{2} + 1\right)} r^{2} + a^{2}} \\ G_{ \, {\psi} \, {\psi} }^{ \phantom{\, {\psi}}\phantom{\, {\psi}} } & = & \frac{2 \, a^{2} m {\mu}^{4} - {\left(a^{2} {\ell}^{2} - 1\right)} {\mu}^{2} r^{4} - 2 \, {\left(a^{4} {\ell}^{2} - a^{2}\right)} {\mu}^{2} r^{2} - {\left(a^{6} {\ell}^{2} - a^{4}\right)} {\mu}^{2}}{a^{6} {\ell}^{4} - 2 \, a^{4} {\ell}^{2} + {\left(a^{4} {\ell}^{4} - 2 \, a^{2} {\ell}^{2} + 1\right)} r^{2} + a^{2}} \end{array}

Check of agreement with Eq. (5.22) of Hawking et al or Eq. (2.3) of o

We need the 1-forms dt\mathrm{d}t, dr\mathrm{d}r, dμ\mathrm{d}\mu, dϕ\mathrm{d}\phi and dψ\mathrm{d}\psi:

dt, dr, dmu, dph, dps = (BL.coframe()[i] for i in M.irange()) dt, dr, dmu, dph, dps
(dt,dr,dμ,dϕ,dψ)\renewcommand{\Bold}[1]{\mathbf{#1}}\left(\mathrm{d} t, \mathrm{d} r, \mathrm{d} {\mu}, \mathrm{d} {\phi}, \mathrm{d} {\psi}\right)
print(dt)
1-form dt on the 5-dimensional Lorentzian manifold M

In agreement with μ=cosθ\mu = \cos\theta, we introduce the 1-form dθ=dμ/sinθ\mathrm{d}\theta = - \mathrm{d}\mu /\sin\theta , with sinθ=1μ2\sin\theta = \sqrt{1-\mu^2} since θ(0,π2)\theta\in\left(0, \frac{\pi}{2}\right):

dth = - 1/sqrt(1 - mu^2)*dmu
s1 = dt - a*sinth2/Xi_a*dph - b*costh2/Xi_b*dps s1.display()
dt+(aμ2aa221)dϕ+(aμ2a221)dψ\renewcommand{\Bold}[1]{\mathbf{#1}}\mathrm{d} t + \left( -\frac{a {\mu}^{2} - a}{a^{2} {\ell}^{2} - 1} \right) \mathrm{d} {\phi} + \left( \frac{a {\mu}^{2}}{a^{2} {\ell}^{2} - 1} \right) \mathrm{d} {\psi}
s2 = a*dt - (r^2 + a^2)/Xi_a*dph s2.display()
adt+(a2+r2a221)dϕ\renewcommand{\Bold}[1]{\mathbf{#1}}a \mathrm{d} t + \left( \frac{a^{2} + r^{2}}{a^{2} {\ell}^{2} - 1} \right) \mathrm{d} {\phi}
s3 = b*dt - (r^2 + b^2)/Xi_b*dps s3.display()
adt+(a2+r2a221)dψ\renewcommand{\Bold}[1]{\mathbf{#1}}a \mathrm{d} t + \left( \frac{a^{2} + r^{2}}{a^{2} {\ell}^{2} - 1} \right) \mathrm{d} {\psi}
s4 = a*b*dt - b*(r^2 + a^2)*sinth2/Xi_a * dph - a*(r^2 + b^2)*costh2/Xi_b * dps s4.display()
a2dt+(a3μ2a3+(aμ2a)r2a221)dϕ+(a3μ2+aμ2r2a221)dψ\renewcommand{\Bold}[1]{\mathbf{#1}}a^{2} \mathrm{d} t + \left( -\frac{a^{3} {\mu}^{2} - a^{3} + {\left(a {\mu}^{2} - a\right)} r^{2}}{a^{2} {\ell}^{2} - 1} \right) \mathrm{d} {\phi} + \left( \frac{a^{3} {\mu}^{2} + a {\mu}^{2} r^{2}}{a^{2} {\ell}^{2} - 1} \right) \mathrm{d} {\psi}
G0 = - Delta_r/rho2 * s1*s1 + Delta_th*sinth2/rho2 * s2*s2 + Delta_th*costh2/rho2 * s3*s3 \ + rho2/Delta_r * dr*dr + rho2/Delta_th * dth*dth + sig/rho2 * s4*s4 G0.display_comp(only_nonredundant=True)
Xtttt=a42+2r4+(2a22+1)r2+a22ma2+r2Xtϕtϕ=a52(a2μ2a2)r4(a522am)μ22(a32μ2a32)r22ama42+(a221)r2a2Xtψtψ=2a32μ2r2+a2μ2r4+(a522am)μ2a42+(a221)r2a2Xrrrr=a2μ2(μ21)a2+r22m(2r2+1)(a2+r2)2r2Xμμμμ=a2+r2a22(a221)μ21Xϕtϕt=a52(a2μ2a2)r4(a522am)μ22(a32μ2a32)r22ama42+(a221)r2a2Xϕϕϕϕ=a622a2mμ4+(a22(a221)μ21)r4a42a2m(a62a44a2m)μ2+2(a42(a42a2)μ2a2)r2a642a42+(a442a22+1)r2+a2Xϕψϕψ=2(a2mμ4a2mμ2)a642a42+(a442a22+1)r2+a2Xψtψt=2a32μ2r2+a2μ2r4+(a522am)μ2a42+(a221)r2a2Xψϕψϕ=2(a2mμ4a2mμ2)a642a42+(a442a22+1)r2+a2Xψψψψ=2a2mμ4(a221)μ2r42(a42a2)μ2r2(a62a4)μ2a642a42+(a442a22+1)r2+a2\renewcommand{\Bold}[1]{\mathbf{#1}}\begin{array}{lcl} X_{ \, t \, t }^{ \phantom{\, t}\phantom{\, t} } & = & -\frac{a^{4} {\ell}^{2} + {\ell}^{2} r^{4} + {\left(2 \, a^{2} {\ell}^{2} + 1\right)} r^{2} + a^{2} - 2 \, m}{a^{2} + r^{2}} \\ X_{ \, t \, {\phi} }^{ \phantom{\, t}\phantom{\, {\phi}} } & = & -\frac{a^{5} {\ell}^{2} - {\left(a {\ell}^{2} {\mu}^{2} - a {\ell}^{2}\right)} r^{4} - {\left(a^{5} {\ell}^{2} - 2 \, a m\right)} {\mu}^{2} - 2 \, {\left(a^{3} {\ell}^{2} {\mu}^{2} - a^{3} {\ell}^{2}\right)} r^{2} - 2 \, a m}{a^{4} {\ell}^{2} + {\left(a^{2} {\ell}^{2} - 1\right)} r^{2} - a^{2}} \\ X_{ \, t \, {\psi} }^{ \phantom{\, t}\phantom{\, {\psi}} } & = & -\frac{2 \, a^{3} {\ell}^{2} {\mu}^{2} r^{2} + a {\ell}^{2} {\mu}^{2} r^{4} + {\left(a^{5} {\ell}^{2} - 2 \, a m\right)} {\mu}^{2}}{a^{4} {\ell}^{2} + {\left(a^{2} {\ell}^{2} - 1\right)} r^{2} - a^{2}} \\ X_{ \, r \, r }^{ \phantom{\, r}\phantom{\, r} } & = & -\frac{a^{2} {\mu}^{2} - {\left({\mu}^{2} - 1\right)} a^{2} + r^{2}}{2 \, m - \frac{{\left({\ell}^{2} r^{2} + 1\right)} {\left(a^{2} + r^{2}\right)}^{2}}{r^{2}}} \\ X_{ \, {\mu} \, {\mu} }^{ \phantom{\, {\mu}}\phantom{\, {\mu}} } & = & -\frac{a^{2} + r^{2}}{a^{2} {\ell}^{2} - {\left(a^{2} {\ell}^{2} - 1\right)} {\mu}^{2} - 1} \\ X_{ \, {\phi} \, t }^{ \phantom{\, {\phi}}\phantom{\, t} } & = & -\frac{a^{5} {\ell}^{2} - {\left(a {\ell}^{2} {\mu}^{2} - a {\ell}^{2}\right)} r^{4} - {\left(a^{5} {\ell}^{2} - 2 \, a m\right)} {\mu}^{2} - 2 \, {\left(a^{3} {\ell}^{2} {\mu}^{2} - a^{3} {\ell}^{2}\right)} r^{2} - 2 \, a m}{a^{4} {\ell}^{2} + {\left(a^{2} {\ell}^{2} - 1\right)} r^{2} - a^{2}} \\ X_{ \, {\phi} \, {\phi} }^{ \phantom{\, {\phi}}\phantom{\, {\phi}} } & = & -\frac{a^{6} {\ell}^{2} - 2 \, a^{2} m {\mu}^{4} + {\left(a^{2} {\ell}^{2} - {\left(a^{2} {\ell}^{2} - 1\right)} {\mu}^{2} - 1\right)} r^{4} - a^{4} - 2 \, a^{2} m - {\left(a^{6} {\ell}^{2} - a^{4} - 4 \, a^{2} m\right)} {\mu}^{2} + 2 \, {\left(a^{4} {\ell}^{2} - {\left(a^{4} {\ell}^{2} - a^{2}\right)} {\mu}^{2} - a^{2}\right)} r^{2}}{a^{6} {\ell}^{4} - 2 \, a^{4} {\ell}^{2} + {\left(a^{4} {\ell}^{4} - 2 \, a^{2} {\ell}^{2} + 1\right)} r^{2} + a^{2}} \\ X_{ \, {\phi} \, {\psi} }^{ \phantom{\, {\phi}}\phantom{\, {\psi}} } & = & -\frac{2 \, {\left(a^{2} m {\mu}^{4} - a^{2} m {\mu}^{2}\right)}}{a^{6} {\ell}^{4} - 2 \, a^{4} {\ell}^{2} + {\left(a^{4} {\ell}^{4} - 2 \, a^{2} {\ell}^{2} + 1\right)} r^{2} + a^{2}} \\ X_{ \, {\psi} \, t }^{ \phantom{\, {\psi}}\phantom{\, t} } & = & -\frac{2 \, a^{3} {\ell}^{2} {\mu}^{2} r^{2} + a {\ell}^{2} {\mu}^{2} r^{4} + {\left(a^{5} {\ell}^{2} - 2 \, a m\right)} {\mu}^{2}}{a^{4} {\ell}^{2} + {\left(a^{2} {\ell}^{2} - 1\right)} r^{2} - a^{2}} \\ X_{ \, {\psi} \, {\phi} }^{ \phantom{\, {\psi}}\phantom{\, {\phi}} } & = & -\frac{2 \, {\left(a^{2} m {\mu}^{4} - a^{2} m {\mu}^{2}\right)}}{a^{6} {\ell}^{4} - 2 \, a^{4} {\ell}^{2} + {\left(a^{4} {\ell}^{4} - 2 \, a^{2} {\ell}^{2} + 1\right)} r^{2} + a^{2}} \\ X_{ \, {\psi} \, {\psi} }^{ \phantom{\, {\psi}}\phantom{\, {\psi}} } & = & \frac{2 \, a^{2} m {\mu}^{4} - {\left(a^{2} {\ell}^{2} - 1\right)} {\mu}^{2} r^{4} - 2 \, {\left(a^{4} {\ell}^{2} - a^{2}\right)} {\mu}^{2} r^{2} - {\left(a^{6} {\ell}^{2} - a^{4}\right)} {\mu}^{2}}{a^{6} {\ell}^{4} - 2 \, a^{4} {\ell}^{2} + {\left(a^{4} {\ell}^{4} - 2 \, a^{2} {\ell}^{2} + 1\right)} r^{2} + a^{2}} \end{array}
G0 == G
True\renewcommand{\Bold}[1]{\mathbf{#1}}\mathrm{True}

Einstein equation

The Ricci tensor of gg is

if not keep_Delta: # Ric = G.ricci() # print(Ric) pass
if not keep_Delta: # show(Ric.display_comp(only_nonredundant=True)) pass

Let us check that gg is a solution of the vacuum Einstein equation with the cosmological constant Λ=62\Lambda = - 6 \ell^2:

Lambda = -6*l^2 if not keep_Delta: # print(Ric == 2/3*Lambda*G) pass

Check of Eq. (2.10)

One must have a=ba=b and keep_Delta == False for the test to pass:

if a == b and not keep_Delta: G1 = - (1 + rho2*l^2 - 2*m/rho2) * dt*dt + rho2/Delta_r * dr*dr \ + rho2/Delta_th * dth*dth \ + sinth2/Xi_a^2*(rho2*Xi_a + 2*a^2*m/rho2*sinth2) * dph * dph \ + costh2/Xi_a^2*(rho2*Xi_a + 2*a^2*m/rho2*costh2) * dps * dps \ + a*sinth2/Xi_a*(rho2*l^2 - 2*m/rho2) * (dt*dph + dph*dt) \ + a*costh2/Xi_a*(rho2*l^2 - 2*m/rho2) * (dt*dps + dps*dt) \ + 2*m*a^2*sinth2*costh2/Xi_a^2/rho2 * (dph*dps + dps*dph) print(G1 == G)
True

Global AdS coordinates

ADS.<T,y,mu,Ph,Ps> = M.chart(r't y:(a/sqrt(1-a^2*l^2),+oo) mu:(0,1):\mu Ph:(0,2*pi):\Phi Ps:(0,2*pi):\Psi') ADS
(M,(t,y,μ,Φ,Ψ))\renewcommand{\Bold}[1]{\mathbf{#1}}\left(\mathcal{M},(t, y, {\mu}, {\Phi}, {\Psi})\right)
ADS.coord_range()
t: (,+);y: (aa22+1,+);μ: (0,1);Φ: (0,2π);Ψ: (0,2π)\renewcommand{\Bold}[1]{\mathbf{#1}}t :\ \left( -\infty, +\infty \right) ;\quad y :\ \left( \frac{a}{\sqrt{-a^{2} {\ell}^{2} + 1}} , +\infty \right) ;\quad {\mu} :\ \left( 0 , 1 \right) ;\quad {\Phi} :\ \left( 0 , 2 \, \pi \right) ;\quad {\Psi} :\ \left( 0 , 2 \, \pi \right)
assumptions()
[txisxreal,rxisxreal,r>0,muxisxreal,μ>0,μ<1,phxisxreal,ϕ>0,ϕ<2π,psxisxreal,ψ>0,ψ<2π,mxisxreal,axisxreal,bxisxreal,lxisxreal,a>0,a22+1>0,yxisxreal,y>aa22+1,Phxisxreal,Φ>0,Φ<2π,Psxisxreal,Ψ>0,Ψ<2π]\renewcommand{\Bold}[1]{\mathbf{#1}}\left[\verb|t|\phantom{\verb!x!}\verb|is|\phantom{\verb!x!}\verb|real|, \verb|r|\phantom{\verb!x!}\verb|is|\phantom{\verb!x!}\verb|real|, r > 0, \verb|mu|\phantom{\verb!x!}\verb|is|\phantom{\verb!x!}\verb|real|, {\mu} > 0, {\mu} < 1, \verb|ph|\phantom{\verb!x!}\verb|is|\phantom{\verb!x!}\verb|real|, {\phi} > 0, {\phi} < 2 \, \pi, \verb|ps|\phantom{\verb!x!}\verb|is|\phantom{\verb!x!}\verb|real|, {\psi} > 0, {\psi} < 2 \, \pi, \verb|m|\phantom{\verb!x!}\verb|is|\phantom{\verb!x!}\verb|real|, \verb|a|\phantom{\verb!x!}\verb|is|\phantom{\verb!x!}\verb|real|, \verb|b|\phantom{\verb!x!}\verb|is|\phantom{\verb!x!}\verb|real|, \verb|l|\phantom{\verb!x!}\verb|is|\phantom{\verb!x!}\verb|real|, a > 0, -a^{2} {\ell}^{2} + 1 > 0, \verb|y|\phantom{\verb!x!}\verb|is|\phantom{\verb!x!}\verb|real|, y > \frac{a}{\sqrt{-a^{2} {\ell}^{2} + 1}}, \verb|Ph|\phantom{\verb!x!}\verb|is|\phantom{\verb!x!}\verb|real|, {\Phi} > 0, {\Phi} < 2 \, \pi, \verb|Ps|\phantom{\verb!x!}\verb|is|\phantom{\verb!x!}\verb|real|, {\Psi} > 0, {\Psi} < 2 \, \pi\right]

Transition from the Boyer-Lindquist coordinates to the AdS global coordinates, according to Eq. (5.24) of S.W. Hawking, C.J. Hunter & M.M. Taylor-Robinson, Phys. Rev. D 59, 064005 (1999):

BL_to_ADS = BL.transition_map(ADS, [t, sqrt(r^2 + a^2)/sqrt(Xi_a), mu, ph + a*l^2*t, ps + a*l^2*t]) BL_to_ADS.display()
{t=ty=a2+r2a22+1μ=μΦ=a2t+ϕΨ=a2t+ψ\renewcommand{\Bold}[1]{\mathbf{#1}}\left\{\begin{array}{lcl} t & = & t \\ y & = & \frac{\sqrt{a^{2} + r^{2}}}{\sqrt{-a^{2} {\ell}^{2} + 1}} \\ {\mu} & = & {\mu} \\ {\Phi} & = & a {\ell}^{2} t + {\phi} \\ {\Psi} & = & a {\ell}^{2} t + {\psi} \end{array}\right.
BL_to_ADS.set_inverse(t, sqrt(Xi_a*y^2 - a^2), mu, Ph - a*l^2*t, Ps - a*l^2*t, verbose=True) BL_to_ADS.inverse().display()
Check of the inverse coordinate transformation: t == t *passed* r == r *passed* mu == mu *passed* ph == ph *passed* ps == ps *passed* t == t *passed* y == abs(y) **failed** mu == mu *passed* Ph == Ph *passed* Ps == Ps *passed* NB: a failed report can reflect a mere lack of simplification.
{t=tr=(a221)y2a2μ=μϕ=a2t+Φψ=a2t+Ψ\renewcommand{\Bold}[1]{\mathbf{#1}}\left\{\begin{array}{lcl} t & = & t \\ r & = & \sqrt{-{\left(a^{2} {\ell}^{2} - 1\right)} y^{2} - a^{2}} \\ {\mu} & = & {\mu} \\ {\phi} & = & -a {\ell}^{2} t + {\Phi} \\ {\psi} & = & -a {\ell}^{2} t + {\Psi} \end{array}\right.

Metric tensor is global AdS coordinates

G.display_comp(chart=ADS, only_nonredundant=True)
Gtttt=(a683a46+3a242)y4+(a663a44+3a221)y2+2m(a663a44+3a221)y2GtΦtΦ=2(amμ2am)(a663a44+3a221)y2GtΨtΨ=2amμ2(a663a44+3a221)y2Gyyyy=(a663a44+3a221)y4(a683a46+3a242)y6+(a663a44+3a221)y42(a221)my22a2mGμμμμ=y2μ21GΦΦΦΦ=2a2mμ44a2mμ2(a663a44+3a22(a663a44+3a221)μ21)y4+2a2m(a663a44+3a221)y2GΦΨΦΨ=2(a2mμ4a2mμ2)(a663a44+3a221)y2GΨΨΨΨ=2a2mμ4(a663a44+3a221)μ2y4(a663a44+3a221)y2\renewcommand{\Bold}[1]{\mathbf{#1}}\begin{array}{lcl} G_{ \, t \, t }^{ \phantom{\, t}\phantom{\, t} } & = & -\frac{{\left(a^{6} {\ell}^{8} - 3 \, a^{4} {\ell}^{6} + 3 \, a^{2} {\ell}^{4} - {\ell}^{2}\right)} y^{4} + {\left(a^{6} {\ell}^{6} - 3 \, a^{4} {\ell}^{4} + 3 \, a^{2} {\ell}^{2} - 1\right)} y^{2} + 2 \, m}{{\left(a^{6} {\ell}^{6} - 3 \, a^{4} {\ell}^{4} + 3 \, a^{2} {\ell}^{2} - 1\right)} y^{2}} \\ G_{ \, t \, {\Phi} }^{ \phantom{\, t}\phantom{\, {\Phi}} } & = & -\frac{2 \, {\left(a m {\mu}^{2} - a m\right)}}{{\left(a^{6} {\ell}^{6} - 3 \, a^{4} {\ell}^{4} + 3 \, a^{2} {\ell}^{2} - 1\right)} y^{2}} \\ G_{ \, t \, {\Psi} }^{ \phantom{\, t}\phantom{\, {\Psi}} } & = & \frac{2 \, a m {\mu}^{2}}{{\left(a^{6} {\ell}^{6} - 3 \, a^{4} {\ell}^{4} + 3 \, a^{2} {\ell}^{2} - 1\right)} y^{2}} \\ G_{ \, y \, y }^{ \phantom{\, y}\phantom{\, y} } & = & \frac{{\left(a^{6} {\ell}^{6} - 3 \, a^{4} {\ell}^{4} + 3 \, a^{2} {\ell}^{2} - 1\right)} y^{4}}{{\left(a^{6} {\ell}^{8} - 3 \, a^{4} {\ell}^{6} + 3 \, a^{2} {\ell}^{4} - {\ell}^{2}\right)} y^{6} + {\left(a^{6} {\ell}^{6} - 3 \, a^{4} {\ell}^{4} + 3 \, a^{2} {\ell}^{2} - 1\right)} y^{4} - 2 \, {\left(a^{2} {\ell}^{2} - 1\right)} m y^{2} - 2 \, a^{2} m} \\ G_{ \, {\mu} \, {\mu} }^{ \phantom{\, {\mu}}\phantom{\, {\mu}} } & = & -\frac{y^{2}}{{\mu}^{2} - 1} \\ G_{ \, {\Phi} \, {\Phi} }^{ \phantom{\, {\Phi}}\phantom{\, {\Phi}} } & = & -\frac{2 \, a^{2} m {\mu}^{4} - 4 \, a^{2} m {\mu}^{2} - {\left(a^{6} {\ell}^{6} - 3 \, a^{4} {\ell}^{4} + 3 \, a^{2} {\ell}^{2} - {\left(a^{6} {\ell}^{6} - 3 \, a^{4} {\ell}^{4} + 3 \, a^{2} {\ell}^{2} - 1\right)} {\mu}^{2} - 1\right)} y^{4} + 2 \, a^{2} m}{{\left(a^{6} {\ell}^{6} - 3 \, a^{4} {\ell}^{4} + 3 \, a^{2} {\ell}^{2} - 1\right)} y^{2}} \\ G_{ \, {\Phi} \, {\Psi} }^{ \phantom{\, {\Phi}}\phantom{\, {\Psi}} } & = & \frac{2 \, {\left(a^{2} m {\mu}^{4} - a^{2} m {\mu}^{2}\right)}}{{\left(a^{6} {\ell}^{6} - 3 \, a^{4} {\ell}^{4} + 3 \, a^{2} {\ell}^{2} - 1\right)} y^{2}} \\ G_{ \, {\Psi} \, {\Psi} }^{ \phantom{\, {\Psi}}\phantom{\, {\Psi}} } & = & -\frac{2 \, a^{2} m {\mu}^{4} - {\left(a^{6} {\ell}^{6} - 3 \, a^{4} {\ell}^{4} + 3 \, a^{2} {\ell}^{2} - 1\right)} {\mu}^{2} y^{4}}{{\left(a^{6} {\ell}^{6} - 3 \, a^{4} {\ell}^{4} + 3 \, a^{2} {\ell}^{2} - 1\right)} y^{2}} \end{array}

From now on, we set the AdS coordinates as the default chart on M\mathcal{M}:

M.set_default_chart(ADS) M.set_default_frame(ADS.frame())

Then

G.display_comp(only_nonredundant=True)
Gtttt=(a683a46+3a242)y4+(a663a44+3a221)y2+2m(a663a44+3a221)y2GtΦtΦ=2(amμ2am)(a663a44+3a221)y2GtΨtΨ=2amμ2(a663a44+3a221)y2Gyyyy=(a663a44+3a221)y4(a683a46+3a242)y6+(a663a44+3a221)y42(a221)my22a2mGμμμμ=y2μ21GΦΦΦΦ=2a2mμ44a2mμ2(a663a44+3a22(a663a44+3a221)μ21)y4+2a2m(a663a44+3a221)y2GΦΨΦΨ=2(a2mμ4a2mμ2)(a663a44+3a221)y2GΨΨΨΨ=2a2mμ4(a663a44+3a221)μ2y4(a663a44+3a221)y2\renewcommand{\Bold}[1]{\mathbf{#1}}\begin{array}{lcl} G_{ \, t \, t }^{ \phantom{\, t}\phantom{\, t} } & = & -\frac{{\left(a^{6} {\ell}^{8} - 3 \, a^{4} {\ell}^{6} + 3 \, a^{2} {\ell}^{4} - {\ell}^{2}\right)} y^{4} + {\left(a^{6} {\ell}^{6} - 3 \, a^{4} {\ell}^{4} + 3 \, a^{2} {\ell}^{2} - 1\right)} y^{2} + 2 \, m}{{\left(a^{6} {\ell}^{6} - 3 \, a^{4} {\ell}^{4} + 3 \, a^{2} {\ell}^{2} - 1\right)} y^{2}} \\ G_{ \, t \, {\Phi} }^{ \phantom{\, t}\phantom{\, {\Phi}} } & = & -\frac{2 \, {\left(a m {\mu}^{2} - a m\right)}}{{\left(a^{6} {\ell}^{6} - 3 \, a^{4} {\ell}^{4} + 3 \, a^{2} {\ell}^{2} - 1\right)} y^{2}} \\ G_{ \, t \, {\Psi} }^{ \phantom{\, t}\phantom{\, {\Psi}} } & = & \frac{2 \, a m {\mu}^{2}}{{\left(a^{6} {\ell}^{6} - 3 \, a^{4} {\ell}^{4} + 3 \, a^{2} {\ell}^{2} - 1\right)} y^{2}} \\ G_{ \, y \, y }^{ \phantom{\, y}\phantom{\, y} } & = & \frac{{\left(a^{6} {\ell}^{6} - 3 \, a^{4} {\ell}^{4} + 3 \, a^{2} {\ell}^{2} - 1\right)} y^{4}}{{\left(a^{6} {\ell}^{8} - 3 \, a^{4} {\ell}^{6} + 3 \, a^{2} {\ell}^{4} - {\ell}^{2}\right)} y^{6} + {\left(a^{6} {\ell}^{6} - 3 \, a^{4} {\ell}^{4} + 3 \, a^{2} {\ell}^{2} - 1\right)} y^{4} - 2 \, {\left(a^{2} {\ell}^{2} - 1\right)} m y^{2} - 2 \, a^{2} m} \\ G_{ \, {\mu} \, {\mu} }^{ \phantom{\, {\mu}}\phantom{\, {\mu}} } & = & -\frac{y^{2}}{{\mu}^{2} - 1} \\ G_{ \, {\Phi} \, {\Phi} }^{ \phantom{\, {\Phi}}\phantom{\, {\Phi}} } & = & -\frac{2 \, a^{2} m {\mu}^{4} - 4 \, a^{2} m {\mu}^{2} - {\left(a^{6} {\ell}^{6} - 3 \, a^{4} {\ell}^{4} + 3 \, a^{2} {\ell}^{2} - {\left(a^{6} {\ell}^{6} - 3 \, a^{4} {\ell}^{4} + 3 \, a^{2} {\ell}^{2} - 1\right)} {\mu}^{2} - 1\right)} y^{4} + 2 \, a^{2} m}{{\left(a^{6} {\ell}^{6} - 3 \, a^{4} {\ell}^{4} + 3 \, a^{2} {\ell}^{2} - 1\right)} y^{2}} \\ G_{ \, {\Phi} \, {\Psi} }^{ \phantom{\, {\Phi}}\phantom{\, {\Psi}} } & = & \frac{2 \, {\left(a^{2} m {\mu}^{4} - a^{2} m {\mu}^{2}\right)}}{{\left(a^{6} {\ell}^{6} - 3 \, a^{4} {\ell}^{4} + 3 \, a^{2} {\ell}^{2} - 1\right)} y^{2}} \\ G_{ \, {\Psi} \, {\Psi} }^{ \phantom{\, {\Psi}}\phantom{\, {\Psi}} } & = & -\frac{2 \, a^{2} m {\mu}^{4} - {\left(a^{6} {\ell}^{6} - 3 \, a^{4} {\ell}^{4} + 3 \, a^{2} {\ell}^{2} - 1\right)} {\mu}^{2} y^{4}}{{\left(a^{6} {\ell}^{6} - 3 \, a^{4} {\ell}^{4} + 3 \, a^{2} {\ell}^{2} - 1\right)} y^{2}} \end{array}

Comparison with Eq. (5.32) of S.W. Hawking, C.J. Hunter & M.M. Taylor-Robinson, Phys. Rev. D 59, 064005 (1999) (or Eq. (2.18) of our paper):

dt, dy, dmu, dPh, dPs = (ADS.coframe()[i] for i in M.irange()) dt, dy, dmu, dPh, dPs
(dt,dy,dμ,dΦ,dΨ)\renewcommand{\Bold}[1]{\mathbf{#1}}\left(\mathrm{d} t, \mathrm{d} y, \mathrm{d} {\mu}, \mathrm{d} {\Phi}, \mathrm{d} {\Psi}\right)
s = dt - a*sinth2*dPh - a*costh2*dPs s.display()
dt+(aμ2a)dΦaμ2dΨ\renewcommand{\Bold}[1]{\mathbf{#1}}\mathrm{d} t + \left( a {\mu}^{2} - a \right) \mathrm{d} {\Phi} -a {\mu}^{2} \mathrm{d} {\Psi}
dth.display()
(1μ+1μ+1)dμ\renewcommand{\Bold}[1]{\mathbf{#1}}\left( -\frac{1}{\sqrt{{\mu} + 1} \sqrt{-{\mu} + 1}} \right) \mathrm{d} {\mu}
G1 = - (1 + y^2*l^2)* dt*dt \ + y^2*(dth*dth + sinth2* dPh*dPh + costh2* dPs*dPs) \ + 2*m/(y^2*Xi_a^3)* s*s \ + y^4/(y^4*(1 + y^2*l^2) - 2*m*y^2/Xi_a^2 + 2*m*a^2/Xi_a^3)* dy*dy # NB: note the Xi_a^3 term in the factor of s*s differs from Eq. (5.32) of Hawking et al (1999) G == G1
True\renewcommand{\Bold}[1]{\mathbf{#1}}\mathrm{True}

String worldsheet

The string worldsheet as a 2-dimensional pseudo-Riemannian manifold (we don't assume Lorentzian signature here):

W = Manifold(2, 'W', structure='pseudo-Riemannian') print(W)
2-dimensional Riemannian manifold W

Let us assume that the string worldsheet is parametrized by (t,y)(t,y):

XW.<t,y> = W.chart(r't y:(a/sqrt(1-a^2*l^2),+oo)') XW
(W,(t,y))\renewcommand{\Bold}[1]{\mathbf{#1}}\left(W,(t, y)\right)

The string embedding in Kerr-AdS spacetime, as an expansion about a straight string solution in AdS (Eqs. (4.30)-(4.32) of the paper)

Mu0 = var('Mu0', latex_name=r'\mu_0', domain='real') Phi0 = var('Phi0', latex_name=r'\Phi_0', domain='real') Psi0 = var('Psi0', latex_name=r'\Psi_0', domain='real') beta1 = var('beta1', latex_name=r'\beta_1', domain='real') beta2 = var('beta2', latex_name=r'\beta_2', domain='real') cosTh0 = Mu0 sinTh0 = sqrt(1 - Mu0^2) mu_s = Mu0 + a^2*function('mu_1')(y) Ph_s = Phi0 + beta1*a*l^2*t + beta1*a*function('Phi_1')(y) Ps_s = Psi0 + beta2*a*l^2*t + beta2*a*function('Psi_1')(y) F = W.diff_map(M, {(XW, ADS): [t, y, mu_s, Ph_s, Ps_s]}, name='F') F.display()
F:WM(t,y)(t,r,μ,ϕ,ψ)=(t,(a221)y2a2,a2μ1(y)+μ0,(aβ1a)2t+aβ1Φ1(y)+Φ0,(aβ2a)2t+aβ2Ψ1(y)+Ψ0)(t,y)(t,y,μ,Φ,Ψ)=(t,y,a2μ1(y)+μ0,aβ12t+aβ1Φ1(y)+Φ0,aβ22t+aβ2Ψ1(y)+Ψ0)\renewcommand{\Bold}[1]{\mathbf{#1}}\begin{array}{llcl} F:& W & \longrightarrow & \mathcal{M} \\ & \left(t, y\right) & \longmapsto & \left(t, r, {\mu}, {\phi}, {\psi}\right) = \left(t, \sqrt{-{\left(a^{2} {\ell}^{2} - 1\right)} y^{2} - a^{2}}, a^{2} \mu_{1}\left(y\right) + {\mu_0}, {\left(a {\beta_1} - a\right)} {\ell}^{2} t + a {\beta_1} \Phi_{1}\left(y\right) + {\Phi_0}, {\left(a {\beta_2} - a\right)} {\ell}^{2} t + a {\beta_2} \Psi_{1}\left(y\right) + {\Psi_0}\right) \\ & \left(t, y\right) & \longmapsto & \left(t, y, {\mu}, {\Phi}, {\Psi}\right) = \left(t, y, a^{2} \mu_{1}\left(y\right) + {\mu_0}, a {\beta_1} {\ell}^{2} t + a {\beta_1} \Phi_{1}\left(y\right) + {\Phi_0}, a {\beta_2} {\ell}^{2} t + a {\beta_2} \Psi_{1}\left(y\right) + {\Psi_0}\right) \end{array}
F.jacobian_matrix()
(10010a2yμ1(y)aβ12aβ1yΦ1(y)aβ22aβ2yΨ1(y))\renewcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{rr} 1 & 0 \\ 0 & 1 \\ 0 & a^{2} \frac{\partial}{\partial y}\mu_{1}\left(y\right) \\ a {\beta_1} {\ell}^{2} & a {\beta_1} \frac{\partial}{\partial y}\Phi_{1}\left(y\right) \\ a {\beta_2} {\ell}^{2} & a {\beta_2} \frac{\partial}{\partial y}\Psi_{1}\left(y\right) \end{array}\right)

Induced metric on the string worldsheet

The string worldsheet metric is the metric gg induced by the spacetime metric GG, i.e. the pullback of GG by the embedding FF:

g = W.metric() g.set(F.pullback(G))
g[0,0]
2(a12β122a12β1β2+a12β22)4mμ1(y)4+8(μ0a10β122μ0a10β1β2+μ0a10β22)4mμ1(y)3((μ02a8β22(μ021)a8β12)10(3μ02a6β223(μ021)a6β12+a6)8+3(μ02a4β22(μ021)a4β12+a4)6(μ02a2β22(μ021)a2β12+3a2)4+2)y4+(a663a44+3a221)y2+(((a12β12a12β22)103(a10β12a10β22)8+3(a8β12a8β22)6(a6β12a6β22)4)y4+4((3μ02a8β22+(3μ021)a8β12(6μ021)a8β1β2)4+(a6β1a6β2)2)m)μ1(y)2+2((μ04a4β22+(μ042μ02+1)a4β122(μ04μ02)a4β1β2)42(μ02a2β2(μ021)a2β1)2+1)m+2(((μ0a10β12μ0a10β22)103(μ0a8β12μ0a8β22)8+3(μ0a6β12μ0a6β22)6(μ0a4β12μ0a4β22)4)y4+4((μ03a6β22+(μ03μ0)a6β12(2μ03μ0)a6β1β2)4+(μ0a4β1μ0a4β2)2)m)μ1(y)(a663a44+3a221)y2\renewcommand{\Bold}[1]{\mathbf{#1}}-\frac{2 \, {\left(a^{12} {\beta_1}^{2} - 2 \, a^{12} {\beta_1} {\beta_2} + a^{12} {\beta_2}^{2}\right)} {\ell}^{4} m \mu_{1}\left(y\right)^{4} + 8 \, {\left({\mu_0} a^{10} {\beta_1}^{2} - 2 \, {\mu_0} a^{10} {\beta_1} {\beta_2} + {\mu_0} a^{10} {\beta_2}^{2}\right)} {\ell}^{4} m \mu_{1}\left(y\right)^{3} - {\left({\left({\mu_0}^{2} a^{8} {\beta_2}^{2} - {\left({\mu_0}^{2} - 1\right)} a^{8} {\beta_1}^{2}\right)} {\ell}^{10} - {\left(3 \, {\mu_0}^{2} a^{6} {\beta_2}^{2} - 3 \, {\left({\mu_0}^{2} - 1\right)} a^{6} {\beta_1}^{2} + a^{6}\right)} {\ell}^{8} + 3 \, {\left({\mu_0}^{2} a^{4} {\beta_2}^{2} - {\left({\mu_0}^{2} - 1\right)} a^{4} {\beta_1}^{2} + a^{4}\right)} {\ell}^{6} - {\left({\mu_0}^{2} a^{2} {\beta_2}^{2} - {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} + 3 \, a^{2}\right)} {\ell}^{4} + {\ell}^{2}\right)} y^{4} + {\left(a^{6} {\ell}^{6} - 3 \, a^{4} {\ell}^{4} + 3 \, a^{2} {\ell}^{2} - 1\right)} y^{2} + {\left({\left({\left(a^{12} {\beta_1}^{2} - a^{12} {\beta_2}^{2}\right)} {\ell}^{10} - 3 \, {\left(a^{10} {\beta_1}^{2} - a^{10} {\beta_2}^{2}\right)} {\ell}^{8} + 3 \, {\left(a^{8} {\beta_1}^{2} - a^{8} {\beta_2}^{2}\right)} {\ell}^{6} - {\left(a^{6} {\beta_1}^{2} - a^{6} {\beta_2}^{2}\right)} {\ell}^{4}\right)} y^{4} + 4 \, {\left({\left(3 \, {\mu_0}^{2} a^{8} {\beta_2}^{2} + {\left(3 \, {\mu_0}^{2} - 1\right)} a^{8} {\beta_1}^{2} - {\left(6 \, {\mu_0}^{2} - 1\right)} a^{8} {\beta_1} {\beta_2}\right)} {\ell}^{4} + {\left(a^{6} {\beta_1} - a^{6} {\beta_2}\right)} {\ell}^{2}\right)} m\right)} \mu_{1}\left(y\right)^{2} + 2 \, {\left({\left({\mu_0}^{4} a^{4} {\beta_2}^{2} + {\left({\mu_0}^{4} - 2 \, {\mu_0}^{2} + 1\right)} a^{4} {\beta_1}^{2} - 2 \, {\left({\mu_0}^{4} - {\mu_0}^{2}\right)} a^{4} {\beta_1} {\beta_2}\right)} {\ell}^{4} - 2 \, {\left({\mu_0}^{2} a^{2} {\beta_2} - {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}\right)} {\ell}^{2} + 1\right)} m + 2 \, {\left({\left({\left({\mu_0} a^{10} {\beta_1}^{2} - {\mu_0} a^{10} {\beta_2}^{2}\right)} {\ell}^{10} - 3 \, {\left({\mu_0} a^{8} {\beta_1}^{2} - {\mu_0} a^{8} {\beta_2}^{2}\right)} {\ell}^{8} + 3 \, {\left({\mu_0} a^{6} {\beta_1}^{2} - {\mu_0} a^{6} {\beta_2}^{2}\right)} {\ell}^{6} - {\left({\mu_0} a^{4} {\beta_1}^{2} - {\mu_0} a^{4} {\beta_2}^{2}\right)} {\ell}^{4}\right)} y^{4} + 4 \, {\left({\left({\mu_0}^{3} a^{6} {\beta_2}^{2} + {\left({\mu_0}^{3} - {\mu_0}\right)} a^{6} {\beta_1}^{2} - {\left(2 \, {\mu_0}^{3} - {\mu_0}\right)} a^{6} {\beta_1} {\beta_2}\right)} {\ell}^{4} + {\left({\mu_0} a^{4} {\beta_1} - {\mu_0} a^{4} {\beta_2}\right)} {\ell}^{2}\right)} m\right)} \mu_{1}\left(y\right)}{{\left(a^{6} {\ell}^{6} - 3 \, a^{4} {\ell}^{4} + 3 \, a^{2} {\ell}^{2} - 1\right)} y^{2}}
g[0,0].expr().denominator().factor()
(a+1)3(a1)3y2\renewcommand{\Bold}[1]{\mathbf{#1}}{\left(a {\ell} + 1\right)}^{3} {\left(a {\ell} - 1\right)}^{3} y^{2}
g[0,1]
(2(a12β12a12β1β2)2mμ1(y)4+8(μ0a10β12μ0a10β1β2)2mμ1(y)3+((μ021)a8β1283(μ021)a6β126+3(μ021)a4β124(μ021)a2β122)y4+((a12β1283a10β126+3a8β124a6β122)y4+2(a6β1+(2(3μ021)a8β12(6μ021)a8β1β2)2)m)μ1(y)2+2((μ021)a2β1+((μ042μ02+1)a4β12(μ04μ02)a4β1β2)2)m+2((μ0a10β1283μ0a8β126+3μ0a6β124μ0a4β122)y4+2(μ0a4β1+(2(μ03μ0)a6β12(2μ03μ0)a6β1β2)2)m)μ1(y))Φ1y(2(a12β1β2a12β22)2mμ1(y)4+8(μ0a10β1β2μ0a10β22)2mμ1(y)3+(μ02a8β2283μ02a6β226+3μ02a4β224μ02a2β222)y4+((a12β2283a10β226+3a8β224a6β222)y4+2(a6β2(6μ02a8β22(6μ021)a8β1β2)2)m)μ1(y)2+2(μ02a2β2(μ04a4β22(μ04μ02)a4β1β2)2)m+2((μ0a10β2283μ0a8β226+3μ0a6β224μ0a4β222)y4+2(μ0a4β2(2μ03a6β22(2μ03μ0)a6β1β2)2)m)μ1(y))Ψ1y(a663a44+3a221)y2\renewcommand{\Bold}[1]{\mathbf{#1}}-\frac{{\left(2 \, {\left(a^{12} {\beta_1}^{2} - a^{12} {\beta_1} {\beta_2}\right)} {\ell}^{2} m \mu_{1}\left(y\right)^{4} + 8 \, {\left({\mu_0} a^{10} {\beta_1}^{2} - {\mu_0} a^{10} {\beta_1} {\beta_2}\right)} {\ell}^{2} m \mu_{1}\left(y\right)^{3} + {\left({\left({\mu_0}^{2} - 1\right)} a^{8} {\beta_1}^{2} {\ell}^{8} - 3 \, {\left({\mu_0}^{2} - 1\right)} a^{6} {\beta_1}^{2} {\ell}^{6} + 3 \, {\left({\mu_0}^{2} - 1\right)} a^{4} {\beta_1}^{2} {\ell}^{4} - {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} {\ell}^{2}\right)} y^{4} + {\left({\left(a^{12} {\beta_1}^{2} {\ell}^{8} - 3 \, a^{10} {\beta_1}^{2} {\ell}^{6} + 3 \, a^{8} {\beta_1}^{2} {\ell}^{4} - a^{6} {\beta_1}^{2} {\ell}^{2}\right)} y^{4} + 2 \, {\left(a^{6} {\beta_1} + {\left(2 \, {\left(3 \, {\mu_0}^{2} - 1\right)} a^{8} {\beta_1}^{2} - {\left(6 \, {\mu_0}^{2} - 1\right)} a^{8} {\beta_1} {\beta_2}\right)} {\ell}^{2}\right)} m\right)} \mu_{1}\left(y\right)^{2} + 2 \, {\left({\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1} + {\left({\left({\mu_0}^{4} - 2 \, {\mu_0}^{2} + 1\right)} a^{4} {\beta_1}^{2} - {\left({\mu_0}^{4} - {\mu_0}^{2}\right)} a^{4} {\beta_1} {\beta_2}\right)} {\ell}^{2}\right)} m + 2 \, {\left({\left({\mu_0} a^{10} {\beta_1}^{2} {\ell}^{8} - 3 \, {\mu_0} a^{8} {\beta_1}^{2} {\ell}^{6} + 3 \, {\mu_0} a^{6} {\beta_1}^{2} {\ell}^{4} - {\mu_0} a^{4} {\beta_1}^{2} {\ell}^{2}\right)} y^{4} + 2 \, {\left({\mu_0} a^{4} {\beta_1} + {\left(2 \, {\left({\mu_0}^{3} - {\mu_0}\right)} a^{6} {\beta_1}^{2} - {\left(2 \, {\mu_0}^{3} - {\mu_0}\right)} a^{6} {\beta_1} {\beta_2}\right)} {\ell}^{2}\right)} m\right)} \mu_{1}\left(y\right)\right)} \frac{\partial\,\Phi_{1}}{\partial y} - {\left(2 \, {\left(a^{12} {\beta_1} {\beta_2} - a^{12} {\beta_2}^{2}\right)} {\ell}^{2} m \mu_{1}\left(y\right)^{4} + 8 \, {\left({\mu_0} a^{10} {\beta_1} {\beta_2} - {\mu_0} a^{10} {\beta_2}^{2}\right)} {\ell}^{2} m \mu_{1}\left(y\right)^{3} + {\left({\mu_0}^{2} a^{8} {\beta_2}^{2} {\ell}^{8} - 3 \, {\mu_0}^{2} a^{6} {\beta_2}^{2} {\ell}^{6} + 3 \, {\mu_0}^{2} a^{4} {\beta_2}^{2} {\ell}^{4} - {\mu_0}^{2} a^{2} {\beta_2}^{2} {\ell}^{2}\right)} y^{4} + {\left({\left(a^{12} {\beta_2}^{2} {\ell}^{8} - 3 \, a^{10} {\beta_2}^{2} {\ell}^{6} + 3 \, a^{8} {\beta_2}^{2} {\ell}^{4} - a^{6} {\beta_2}^{2} {\ell}^{2}\right)} y^{4} + 2 \, {\left(a^{6} {\beta_2} - {\left(6 \, {\mu_0}^{2} a^{8} {\beta_2}^{2} - {\left(6 \, {\mu_0}^{2} - 1\right)} a^{8} {\beta_1} {\beta_2}\right)} {\ell}^{2}\right)} m\right)} \mu_{1}\left(y\right)^{2} + 2 \, {\left({\mu_0}^{2} a^{2} {\beta_2} - {\left({\mu_0}^{4} a^{4} {\beta_2}^{2} - {\left({\mu_0}^{4} - {\mu_0}^{2}\right)} a^{4} {\beta_1} {\beta_2}\right)} {\ell}^{2}\right)} m + 2 \, {\left({\left({\mu_0} a^{10} {\beta_2}^{2} {\ell}^{8} - 3 \, {\mu_0} a^{8} {\beta_2}^{2} {\ell}^{6} + 3 \, {\mu_0} a^{6} {\beta_2}^{2} {\ell}^{4} - {\mu_0} a^{4} {\beta_2}^{2} {\ell}^{2}\right)} y^{4} + 2 \, {\left({\mu_0} a^{4} {\beta_2} - {\left(2 \, {\mu_0}^{3} a^{6} {\beta_2}^{2} - {\left(2 \, {\mu_0}^{3} - {\mu_0}\right)} a^{6} {\beta_1} {\beta_2}\right)} {\ell}^{2}\right)} m\right)} \mu_{1}\left(y\right)\right)} \frac{\partial\,\Psi_{1}}{\partial y}}{{\left(a^{6} {\ell}^{6} - 3 \, a^{4} {\ell}^{4} + 3 \, a^{2} {\ell}^{2} - 1\right)} y^{2}}

Nambu-Goto action

detg = g.determinant().expr()

Expanding at second order in aa:

detg_a2 = detg.series(a, 3).truncate().simplify_full() detg_a2
((μ02a2β22(μ021)a2β12)42)y62((2μ02a2β22(μ021)a2β1a2)21)my2y4+2a2m+((μ021)a2β124y10+2(μ021)a2β122y84(μ021)a2β12my4+4(μ021)a2β12m2y2(4(μ021)a2β122m(μ021)a2β12)y6)yΦ1(y)2(μ02a2β224y10+2μ02a2β222y84μ02a2β22my4+4μ02a2β22m2y2(4μ02a2β222mμ02a2β22)y6)yΨ1(y)22y6+y42my2\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{{\left({\left({\mu_0}^{2} a^{2} {\beta_2}^{2} - {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2}\right)} {\ell}^{4} - {\ell}^{2}\right)} y^{6} - 2 \, {\left({\left(2 \, {\mu_0}^{2} a^{2} {\beta_2} - 2 \, {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1} - a^{2}\right)} {\ell}^{2} - 1\right)} m y^{2} - y^{4} + 2 \, a^{2} m + {\left({\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} {\ell}^{4} y^{10} + 2 \, {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} {\ell}^{2} y^{8} - 4 \, {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} m y^{4} + 4 \, {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} m^{2} y^{2} - {\left(4 \, {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} {\ell}^{2} m - {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2}\right)} y^{6}\right)} \frac{\partial}{\partial y}\Phi_{1}\left(y\right)^{2} - {\left({\mu_0}^{2} a^{2} {\beta_2}^{2} {\ell}^{4} y^{10} + 2 \, {\mu_0}^{2} a^{2} {\beta_2}^{2} {\ell}^{2} y^{8} - 4 \, {\mu_0}^{2} a^{2} {\beta_2}^{2} m y^{4} + 4 \, {\mu_0}^{2} a^{2} {\beta_2}^{2} m^{2} y^{2} - {\left(4 \, {\mu_0}^{2} a^{2} {\beta_2}^{2} {\ell}^{2} m - {\mu_0}^{2} a^{2} {\beta_2}^{2}\right)} y^{6}\right)} \frac{\partial}{\partial y}\Psi_{1}\left(y\right)^{2}}{{\ell}^{2} y^{6} + y^{4} - 2 \, m y^{2}}

The Nambu-Goto Lagrangian at second order in aa:

L_a2 = (sqrt(-detg_a2)).series(a, 3).truncate().simplify_full() L_a2
((μ02a2β22(μ021)a2β12)422)y62((2μ02a2β22(μ021)a2β1a2)22)my22y4+2a2m+((μ021)a2β124y10+2(μ021)a2β122y84(μ021)a2β12my4+4(μ021)a2β12m2y2(4(μ021)a2β122m(μ021)a2β12)y6)yΦ1(y)2(μ02a2β224y10+2μ02a2β222y84μ02a2β22my4+4μ02a2β22m2y2(4μ02a2β222mμ02a2β22)y6)yΨ1(y)22(2y6+y42my2)\renewcommand{\Bold}[1]{\mathbf{#1}}-\frac{{\left({\left({\mu_0}^{2} a^{2} {\beta_2}^{2} - {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2}\right)} {\ell}^{4} - 2 \, {\ell}^{2}\right)} y^{6} - 2 \, {\left({\left(2 \, {\mu_0}^{2} a^{2} {\beta_2} - 2 \, {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1} - a^{2}\right)} {\ell}^{2} - 2\right)} m y^{2} - 2 \, y^{4} + 2 \, a^{2} m + {\left({\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} {\ell}^{4} y^{10} + 2 \, {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} {\ell}^{2} y^{8} - 4 \, {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} m y^{4} + 4 \, {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} m^{2} y^{2} - {\left(4 \, {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} {\ell}^{2} m - {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2}\right)} y^{6}\right)} \frac{\partial}{\partial y}\Phi_{1}\left(y\right)^{2} - {\left({\mu_0}^{2} a^{2} {\beta_2}^{2} {\ell}^{4} y^{10} + 2 \, {\mu_0}^{2} a^{2} {\beta_2}^{2} {\ell}^{2} y^{8} - 4 \, {\mu_0}^{2} a^{2} {\beta_2}^{2} m y^{4} + 4 \, {\mu_0}^{2} a^{2} {\beta_2}^{2} m^{2} y^{2} - {\left(4 \, {\mu_0}^{2} a^{2} {\beta_2}^{2} {\ell}^{2} m - {\mu_0}^{2} a^{2} {\beta_2}^{2}\right)} y^{6}\right)} \frac{\partial}{\partial y}\Psi_{1}\left(y\right)^{2}}{2 \, {\left({\ell}^{2} y^{6} + y^{4} - 2 \, m y^{2}\right)}}
L_a2.numerator()
μ02a2β124y10yΦ1(y)2+μ02a2β224y10yΨ1(y)2+a2β124y10yΦ1(y)22μ02a2β122y8yΦ1(y)2+2μ02a2β222y8yΨ1(y)2+4μ02a2β122my6yΦ1(y)24μ02a2β222my6yΨ1(y)2+μ02a2β124y6μ02a2β224y6+2a2β122y8yΦ1(y)24a2β122my6yΦ1(y)2a2β124y6μ02a2β12y6yΦ1(y)2+μ02a2β22y6yΨ1(y)2+4μ02a2β12my4yΦ1(y)24μ02a2β22my4yΨ1(y)24μ02a2β12m2y2yΦ1(y)2+a2β12y6yΦ1(y)2+4μ02a2β22m2y2yΨ1(y)24a2β12my4yΦ1(y)24μ02a2β12my2+4μ02a2β22my2+4a2β12m2y2yΦ1(y)2+4a2β12my2+22y62a22my2+2y42a2m4my2\renewcommand{\Bold}[1]{\mathbf{#1}}-{\mu_0}^{2} a^{2} {\beta_1}^{2} {\ell}^{4} y^{10} \frac{\partial}{\partial y}\Phi_{1}\left(y\right)^{2} + {\mu_0}^{2} a^{2} {\beta_2}^{2} {\ell}^{4} y^{10} \frac{\partial}{\partial y}\Psi_{1}\left(y\right)^{2} + a^{2} {\beta_1}^{2} {\ell}^{4} y^{10} \frac{\partial}{\partial y}\Phi_{1}\left(y\right)^{2} - 2 \, {\mu_0}^{2} a^{2} {\beta_1}^{2} {\ell}^{2} y^{8} \frac{\partial}{\partial y}\Phi_{1}\left(y\right)^{2} + 2 \, {\mu_0}^{2} a^{2} {\beta_2}^{2} {\ell}^{2} y^{8} \frac{\partial}{\partial y}\Psi_{1}\left(y\right)^{2} + 4 \, {\mu_0}^{2} a^{2} {\beta_1}^{2} {\ell}^{2} m y^{6} \frac{\partial}{\partial y}\Phi_{1}\left(y\right)^{2} - 4 \, {\mu_0}^{2} a^{2} {\beta_2}^{2} {\ell}^{2} m y^{6} \frac{\partial}{\partial y}\Psi_{1}\left(y\right)^{2} + {\mu_0}^{2} a^{2} {\beta_1}^{2} {\ell}^{4} y^{6} - {\mu_0}^{2} a^{2} {\beta_2}^{2} {\ell}^{4} y^{6} + 2 \, a^{2} {\beta_1}^{2} {\ell}^{2} y^{8} \frac{\partial}{\partial y}\Phi_{1}\left(y\right)^{2} - 4 \, a^{2} {\beta_1}^{2} {\ell}^{2} m y^{6} \frac{\partial}{\partial y}\Phi_{1}\left(y\right)^{2} - a^{2} {\beta_1}^{2} {\ell}^{4} y^{6} - {\mu_0}^{2} a^{2} {\beta_1}^{2} y^{6} \frac{\partial}{\partial y}\Phi_{1}\left(y\right)^{2} + {\mu_0}^{2} a^{2} {\beta_2}^{2} y^{6} \frac{\partial}{\partial y}\Psi_{1}\left(y\right)^{2} + 4 \, {\mu_0}^{2} a^{2} {\beta_1}^{2} m y^{4} \frac{\partial}{\partial y}\Phi_{1}\left(y\right)^{2} - 4 \, {\mu_0}^{2} a^{2} {\beta_2}^{2} m y^{4} \frac{\partial}{\partial y}\Psi_{1}\left(y\right)^{2} - 4 \, {\mu_0}^{2} a^{2} {\beta_1}^{2} m^{2} y^{2} \frac{\partial}{\partial y}\Phi_{1}\left(y\right)^{2} + a^{2} {\beta_1}^{2} y^{6} \frac{\partial}{\partial y}\Phi_{1}\left(y\right)^{2} + 4 \, {\mu_0}^{2} a^{2} {\beta_2}^{2} m^{2} y^{2} \frac{\partial}{\partial y}\Psi_{1}\left(y\right)^{2} - 4 \, a^{2} {\beta_1}^{2} m y^{4} \frac{\partial}{\partial y}\Phi_{1}\left(y\right)^{2} - 4 \, {\mu_0}^{2} a^{2} {\beta_1} {\ell}^{2} m y^{2} + 4 \, {\mu_0}^{2} a^{2} {\beta_2} {\ell}^{2} m y^{2} + 4 \, a^{2} {\beta_1}^{2} m^{2} y^{2} \frac{\partial}{\partial y}\Phi_{1}\left(y\right)^{2} + 4 \, a^{2} {\beta_1} {\ell}^{2} m y^{2} + 2 \, {\ell}^{2} y^{6} - 2 \, a^{2} {\ell}^{2} m y^{2} + 2 \, y^{4} - 2 \, a^{2} m - 4 \, m y^{2}
L_a2.denominator()
22y6+2y44my2\renewcommand{\Bold}[1]{\mathbf{#1}}2 \, {\ell}^{2} y^{6} + 2 \, y^{4} - 4 \, m y^{2}

Euler-Lagrange equations

def euler_lagrange(lagr, qs, var): r""" Derive the Euler-Lagrange equations from a given Lagrangian. INPUT: - ``lagr`` -- symbolic expression representing the Lagrangian density - ``qs`` -- either a single symbolic function or a list/tuple of symbolic functions, representing the `q`'s; these functions must appear in ``lagr`` up to at most their first derivatives - ``var`` -- either a single variable, typically `t` (1-dimensional problem) or a list/tuple of symbolic variables OUTPUT: - list of Euler-Lagrange equations; if only one function is involved, the single Euler-Lagrannge equation is returned instead. """ if not isinstance(qs, (list, tuple)): qs = [qs] if not isinstance(var, (list, tuple)): var = [var] n = len(qs) d = len(var) qv = [SR.var('qxxxx{}'.format(q)) for q in qs] dqv = [[SR.var('qxxxx{}_{}'.format(q, v)) for v in var] for q in qs] subs = {qs[i](*var): qv[i] for i in range(n)} subs_inv = {qv[i]: qs[i](*var) for i in range(n)} for i in range(n): subs.update({diff(qs[i](*var), var[j]): dqv[i][j] for j in range(d)}) subs_inv.update({dqv[i][j]: diff(qs[i](*var), var[j]) for j in range(d)}) lg = lagr.substitute(subs) eqs = [] for i in range(n): dLdq = diff(lg, qv[i]).simplify_full() dLdq = dLdq.substitute(subs_inv) ddL = 0 for j in range(d): h = diff(lg, dqv[i][j]).simplify_full() h = h.substitute(subs_inv) ddL += diff(h, var[j]) eqs.append((dLdq - ddL).simplify_full() == 0) if n == 1: return eqs[0] return eqs

We compute the Euler-Lagrange equations at order a2a^2 for ϕ1\phi_1 and ψ1\psi_1:

eqs = euler_lagrange(L_a2, [Phi_1, Psi_1], y) eqs
[2(2(μ021)a2β122y3+(μ021)a2β12y)yΦ1(y)+((μ021)a2β122y4+(μ021)a2β12y22(μ021)a2β12m)2(y)2Φ1(y)=0,2(2μ02a2β222y3+μ02a2β22y)yΨ1(y)(μ02a2β222y4+μ02a2β22y22μ02a2β22m)2(y)2Ψ1(y)=0]\renewcommand{\Bold}[1]{\mathbf{#1}}\left[2 \, {\left(2 \, {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} {\ell}^{2} y^{3} + {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} y\right)} \frac{\partial}{\partial y}\Phi_{1}\left(y\right) + {\left({\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} {\ell}^{2} y^{4} + {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} y^{2} - 2 \, {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} m\right)} \frac{\partial^{2}}{(\partial y)^{2}}\Phi_{1}\left(y\right) = 0, -2 \, {\left(2 \, {\mu_0}^{2} a^{2} {\beta_2}^{2} {\ell}^{2} y^{3} + {\mu_0}^{2} a^{2} {\beta_2}^{2} y\right)} \frac{\partial}{\partial y}\Psi_{1}\left(y\right) - {\left({\mu_0}^{2} a^{2} {\beta_2}^{2} {\ell}^{2} y^{4} + {\mu_0}^{2} a^{2} {\beta_2}^{2} y^{2} - 2 \, {\mu_0}^{2} a^{2} {\beta_2}^{2} m\right)} \frac{\partial^{2}}{(\partial y)^{2}}\Psi_{1}\left(y\right) = 0\right]

Solving the equation for ϕ1\phi_1 (check of Eq. (4.34))

eq_phi1 = eqs[0] eq_phi1
2(2(μ021)a2β122y3+(μ021)a2β12y)yΦ1(y)+((μ021)a2β122y4+(μ021)a2β12y22(μ021)a2β12m)2(y)2Φ1(y)=0\renewcommand{\Bold}[1]{\mathbf{#1}}2 \, {\left(2 \, {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} {\ell}^{2} y^{3} + {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} y\right)} \frac{\partial}{\partial y}\Phi_{1}\left(y\right) + {\left({\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} {\ell}^{2} y^{4} + {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} y^{2} - 2 \, {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} m\right)} \frac{\partial^{2}}{(\partial y)^{2}}\Phi_{1}\left(y\right) = 0
eq_phi1 = (eq_phi1/(a^2*(Mu0^2-1)*beta1^2)).simplify_full() eq_phi1
2(22y3+y)yΦ1(y)+(2y4+y22m)2(y)2Φ1(y)=0\renewcommand{\Bold}[1]{\mathbf{#1}}2 \, {\left(2 \, {\ell}^{2} y^{3} + y\right)} \frac{\partial}{\partial y}\Phi_{1}\left(y\right) + {\left({\ell}^{2} y^{4} + y^{2} - 2 \, m\right)} \frac{\partial^{2}}{(\partial y)^{2}}\Phi_{1}\left(y\right) = 0
Phi1_sol(y) = desolve(eq_phi1, Phi_1(y), ivar=y) Phi1_sol(y)
K112y4+y22mdy+K2\renewcommand{\Bold}[1]{\mathbf{#1}}K_{1} \int \frac{1}{{\ell}^{2} y^{4} + y^{2} - 2 \, m}\,{d y} + K_{2}

The symbolic constants K1K_1 and K2K_2 are actually denoted _K1 and _K2 by SageMath, as the print reveals:

print(Phi1_sol(y))
_K1*integrate(1/(l^2*y^4 + y^2 - 2*m), y) + _K2

Hence we perform the substitutions with SR.var('_K1') and SR.var('_K2'):

P = var("P", latex_name=r"\mathcal{P}'") Phi1_sol(y) = Phi1_sol(y).subs({SR.var('_K1'): P, SR.var('_K2'): 0}) print(Phi1_sol(y))
P*integrate(1/(l^2*y^4 + y^2 - 2*m), y)

Solving the equation for ψ1\psi_1 (check of Eq. (4.34))

eq_psi1 = eqs[1] eq_psi1
2(2μ02a2β222y3+μ02a2β22y)yΨ1(y)(μ02a2β222y4+μ02a2β22y22μ02a2β22m)2(y)2Ψ1(y)=0\renewcommand{\Bold}[1]{\mathbf{#1}}-2 \, {\left(2 \, {\mu_0}^{2} a^{2} {\beta_2}^{2} {\ell}^{2} y^{3} + {\mu_0}^{2} a^{2} {\beta_2}^{2} y\right)} \frac{\partial}{\partial y}\Psi_{1}\left(y\right) - {\left({\mu_0}^{2} a^{2} {\beta_2}^{2} {\ell}^{2} y^{4} + {\mu_0}^{2} a^{2} {\beta_2}^{2} y^{2} - 2 \, {\mu_0}^{2} a^{2} {\beta_2}^{2} m\right)} \frac{\partial^{2}}{(\partial y)^{2}}\Psi_{1}\left(y\right) = 0
eq_psi1 = (eq_psi1/(a^2*Mu0^2*beta2^2)).simplify_full() eq_psi1
2(22y3+y)yΨ1(y)(2y4+y22m)2(y)2Ψ1(y)=0\renewcommand{\Bold}[1]{\mathbf{#1}}-2 \, {\left(2 \, {\ell}^{2} y^{3} + y\right)} \frac{\partial}{\partial y}\Psi_{1}\left(y\right) - {\left({\ell}^{2} y^{4} + y^{2} - 2 \, m\right)} \frac{\partial^{2}}{(\partial y)^{2}}\Psi_{1}\left(y\right) = 0
Psi1_sol(y) = desolve(eq_psi1, Psi_1(y), ivar=y) Psi1_sol(y)
K112y4+y22mdy+K2\renewcommand{\Bold}[1]{\mathbf{#1}}K_{1} \int \frac{1}{{\ell}^{2} y^{4} + y^{2} - 2 \, m}\,{d y} + K_{2}
Q = var('Q', latex_name=r"\mathcal{Q}'") Psi1_sol(y) = Psi1_sol(y).subs({SR.var('_K1'): Q, SR.var('_K2'): 0}) print(Psi1_sol(y))
Q*integrate(1/(l^2*y^4 + y^2 - 2*m), y)

Nambu-Goto Lagrangian at fourth order in aa

detg_a4 = detg.series(a, 5).truncate().simplify_full()
L_a4 = (sqrt(-detg_a4)).series(a, 5).truncate().simplify_full()
eqs = euler_lagrange(L_a4, [Phi_1, Psi_1, mu_1], y)

The equation for μ1\mu_1 (check of Eq. (4.35))

eq_mu1 = eqs[2] eq_mu1
((μ03μ0)a4β12(μ03μ0)a4β22)4y44((μ03μ0)a4β1(μ03μ0)a4β2)2m((μ03μ0)a4β124y8+2(μ03μ0)a4β122y64(μ03μ0)a4β12my2+4(μ03μ0)a4β12m2(4(μ03μ0)a4β122m(μ03μ0)a4β12)y4)yΦ1(y)2+((μ03μ0)a4β224y8+2(μ03μ0)a4β222y64(μ03μ0)a4β22my2+4(μ03μ0)a4β22m2(4(μ03μ0)a4β222m(μ03μ0)a4β22)y4)yΨ1(y)2+2(2a44y7+3a42y52a4my(4a42ma4)y3)yμ1(y)+(a44y8+2a42y64a4my2+4a4m2(4a42ma4)y4)2(y)2μ1(y)(μ021)2y4+(μ021)y22(μ021)m=0\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{{\left({\left({\mu_0}^{3} - {\mu_0}\right)} a^{4} {\beta_1}^{2} - {\left({\mu_0}^{3} - {\mu_0}\right)} a^{4} {\beta_2}^{2}\right)} {\ell}^{4} y^{4} - 4 \, {\left({\left({\mu_0}^{3} - {\mu_0}\right)} a^{4} {\beta_1} - {\left({\mu_0}^{3} - {\mu_0}\right)} a^{4} {\beta_2}\right)} {\ell}^{2} m - {\left({\left({\mu_0}^{3} - {\mu_0}\right)} a^{4} {\beta_1}^{2} {\ell}^{4} y^{8} + 2 \, {\left({\mu_0}^{3} - {\mu_0}\right)} a^{4} {\beta_1}^{2} {\ell}^{2} y^{6} - 4 \, {\left({\mu_0}^{3} - {\mu_0}\right)} a^{4} {\beta_1}^{2} m y^{2} + 4 \, {\left({\mu_0}^{3} - {\mu_0}\right)} a^{4} {\beta_1}^{2} m^{2} - {\left(4 \, {\left({\mu_0}^{3} - {\mu_0}\right)} a^{4} {\beta_1}^{2} {\ell}^{2} m - {\left({\mu_0}^{3} - {\mu_0}\right)} a^{4} {\beta_1}^{2}\right)} y^{4}\right)} \frac{\partial}{\partial y}\Phi_{1}\left(y\right)^{2} + {\left({\left({\mu_0}^{3} - {\mu_0}\right)} a^{4} {\beta_2}^{2} {\ell}^{4} y^{8} + 2 \, {\left({\mu_0}^{3} - {\mu_0}\right)} a^{4} {\beta_2}^{2} {\ell}^{2} y^{6} - 4 \, {\left({\mu_0}^{3} - {\mu_0}\right)} a^{4} {\beta_2}^{2} m y^{2} + 4 \, {\left({\mu_0}^{3} - {\mu_0}\right)} a^{4} {\beta_2}^{2} m^{2} - {\left(4 \, {\left({\mu_0}^{3} - {\mu_0}\right)} a^{4} {\beta_2}^{2} {\ell}^{2} m - {\left({\mu_0}^{3} - {\mu_0}\right)} a^{4} {\beta_2}^{2}\right)} y^{4}\right)} \frac{\partial}{\partial y}\Psi_{1}\left(y\right)^{2} + 2 \, {\left(2 \, a^{4} {\ell}^{4} y^{7} + 3 \, a^{4} {\ell}^{2} y^{5} - 2 \, a^{4} m y - {\left(4 \, a^{4} {\ell}^{2} m - a^{4}\right)} y^{3}\right)} \frac{\partial}{\partial y}\mu_{1}\left(y\right) + {\left(a^{4} {\ell}^{4} y^{8} + 2 \, a^{4} {\ell}^{2} y^{6} - 4 \, a^{4} m y^{2} + 4 \, a^{4} m^{2} - {\left(4 \, a^{4} {\ell}^{2} m - a^{4}\right)} y^{4}\right)} \frac{\partial^{2}}{(\partial y)^{2}}\mu_{1}\left(y\right)}{{\left({\mu_0}^{2} - 1\right)} {\ell}^{2} y^{4} + {\left({\mu_0}^{2} - 1\right)} y^{2} - 2 \, {\left({\mu_0}^{2} - 1\right)} m} = 0
# eq_mu1.lhs().numerator().simplify_full()
# eq_mu1.lhs().denominator().simplify_full()
eq_mu1 = eq_mu1.lhs().numerator().simplify_full() == 0
eq_mu1 = (eq_mu1/a^4).simplify_full() eq_mu1
((μ03μ0)β12(μ03μ0)β22)4y44((μ03μ0)β1(μ03μ0)β2)2m((μ03μ0)β124y8+2(μ03μ0)β122y64(μ03μ0)β12my2+4(μ03μ0)β12m2(4(μ03μ0)β122m(μ03μ0)β12)y4)yΦ1(y)2+((μ03μ0)β224y8+2(μ03μ0)β222y64(μ03μ0)β22my2+4(μ03μ0)β22m2(4(μ03μ0)β222m(μ03μ0)β22)y4)yΨ1(y)2+2(24y7+32y5(42m1)y32my)yμ1(y)+(4y8+22y6(42m1)y44my2+4m2)2(y)2μ1(y)=0\renewcommand{\Bold}[1]{\mathbf{#1}}{\left({\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_1}^{2} - {\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_2}^{2}\right)} {\ell}^{4} y^{4} - 4 \, {\left({\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_1} - {\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_2}\right)} {\ell}^{2} m - {\left({\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_1}^{2} {\ell}^{4} y^{8} + 2 \, {\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_1}^{2} {\ell}^{2} y^{6} - 4 \, {\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_1}^{2} m y^{2} + 4 \, {\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_1}^{2} m^{2} - {\left(4 \, {\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_1}^{2} {\ell}^{2} m - {\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_1}^{2}\right)} y^{4}\right)} \frac{\partial}{\partial y}\Phi_{1}\left(y\right)^{2} + {\left({\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_2}^{2} {\ell}^{4} y^{8} + 2 \, {\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_2}^{2} {\ell}^{2} y^{6} - 4 \, {\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_2}^{2} m y^{2} + 4 \, {\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_2}^{2} m^{2} - {\left(4 \, {\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_2}^{2} {\ell}^{2} m - {\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_2}^{2}\right)} y^{4}\right)} \frac{\partial}{\partial y}\Psi_{1}\left(y\right)^{2} + 2 \, {\left(2 \, {\ell}^{4} y^{7} + 3 \, {\ell}^{2} y^{5} - {\left(4 \, {\ell}^{2} m - 1\right)} y^{3} - 2 \, m y\right)} \frac{\partial}{\partial y}\mu_{1}\left(y\right) + {\left({\ell}^{4} y^{8} + 2 \, {\ell}^{2} y^{6} - {\left(4 \, {\ell}^{2} m - 1\right)} y^{4} - 4 \, m y^{2} + 4 \, m^{2}\right)} \frac{\partial^{2}}{(\partial y)^{2}}\mu_{1}\left(y\right) = 0

We plug the solutions obtained previously for ϕ1(r)\phi_1(r) and ψ1(r)\psi_1(r) in this equation:

eq_mu1 = eq_mu1.substitute_function(Phi_1, Phi1_sol).substitute_function(Psi_1, Psi1_sol) eq_mu1 = eq_mu1.simplify_full() eq_mu1
((μ03μ0)β12(μ03μ0)β22)4y4(μ03μ0)P2β12+(μ03μ0)Q2β224((μ03μ0)β1(μ03μ0)β2)2m+2(24y7+32y5(42m1)y32my)yμ1(y)+(4y8+22y6(42m1)y44my2+4m2)2(y)2μ1(y)=0\renewcommand{\Bold}[1]{\mathbf{#1}}{\left({\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_1}^{2} - {\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_2}^{2}\right)} {\ell}^{4} y^{4} - {\left({\mu_0}^{3} - {\mu_0}\right)} {\mathcal{P}'}^{2} {\beta_1}^{2} + {\left({\mu_0}^{3} - {\mu_0}\right)} {\mathcal{Q}'}^{2} {\beta_2}^{2} - 4 \, {\left({\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_1} - {\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_2}\right)} {\ell}^{2} m + 2 \, {\left(2 \, {\ell}^{4} y^{7} + 3 \, {\ell}^{2} y^{5} - {\left(4 \, {\ell}^{2} m - 1\right)} y^{3} - 2 \, m y\right)} \frac{\partial}{\partial y}\mu_{1}\left(y\right) + {\left({\ell}^{4} y^{8} + 2 \, {\ell}^{2} y^{6} - {\left(4 \, {\ell}^{2} m - 1\right)} y^{4} - 4 \, m y^{2} + 4 \, m^{2}\right)} \frac{\partial^{2}}{(\partial y)^{2}}\mu_{1}\left(y\right) = 0
lhs = eq_mu1.lhs() lhs = lhs.simplify_full() lhs
((μ03μ0)β12(μ03μ0)β22)4y4(μ03μ0)P2β12+(μ03μ0)Q2β224((μ03μ0)β1(μ03μ0)β2)2m+2(24y7+32y5(42m1)y32my)yμ1(y)+(4y8+22y6(42m1)y44my2+4m2)2(y)2μ1(y)\renewcommand{\Bold}[1]{\mathbf{#1}}{\left({\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_1}^{2} - {\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_2}^{2}\right)} {\ell}^{4} y^{4} - {\left({\mu_0}^{3} - {\mu_0}\right)} {\mathcal{P}'}^{2} {\beta_1}^{2} + {\left({\mu_0}^{3} - {\mu_0}\right)} {\mathcal{Q}'}^{2} {\beta_2}^{2} - 4 \, {\left({\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_1} - {\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_2}\right)} {\ell}^{2} m + 2 \, {\left(2 \, {\ell}^{4} y^{7} + 3 \, {\ell}^{2} y^{5} - {\left(4 \, {\ell}^{2} m - 1\right)} y^{3} - 2 \, m y\right)} \frac{\partial}{\partial y}\mu_{1}\left(y\right) + {\left({\ell}^{4} y^{8} + 2 \, {\ell}^{2} y^{6} - {\left(4 \, {\ell}^{2} m - 1\right)} y^{4} - 4 \, m y^{2} + 4 \, m^{2}\right)} \frac{\partial^{2}}{(\partial y)^{2}}\mu_{1}\left(y\right)
s = lhs.coefficient(diff(mu_1(y), y, 2)) # coefficient of mu_1'' s.factor()
(2y4+y22m)2\renewcommand{\Bold}[1]{\mathbf{#1}}{\left({\ell}^{2} y^{4} + y^{2} - 2 \, m\right)}^{2}
s1 = (lhs/s - diff(mu_1(y), y, 2)).simplify_full() s1
((μ03μ0)β12(μ03μ0)β22)4y4(μ03μ0)P2β12+(μ03μ0)Q2β224((μ03μ0)β1(μ03μ0)β2)2m+2(24y7+32y5(42m1)y32my)yμ1(y)4y8+22y6(42m1)y44my2+4m2\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{{\left({\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_1}^{2} - {\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_2}^{2}\right)} {\ell}^{4} y^{4} - {\left({\mu_0}^{3} - {\mu_0}\right)} {\mathcal{P}'}^{2} {\beta_1}^{2} + {\left({\mu_0}^{3} - {\mu_0}\right)} {\mathcal{Q}'}^{2} {\beta_2}^{2} - 4 \, {\left({\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_1} - {\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_2}\right)} {\ell}^{2} m + 2 \, {\left(2 \, {\ell}^{4} y^{7} + 3 \, {\ell}^{2} y^{5} - {\left(4 \, {\ell}^{2} m - 1\right)} y^{3} - 2 \, m y\right)} \frac{\partial}{\partial y}\mu_{1}\left(y\right)}{{\ell}^{4} y^{8} + 2 \, {\ell}^{2} y^{6} - {\left(4 \, {\ell}^{2} m - 1\right)} y^{4} - 4 \, m y^{2} + 4 \, m^{2}}
b1 = s1.coefficient(diff(mu_1(y), y)).factor() b1
2(22y2+1)y2y4+y22m\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{2 \, {\left(2 \, {\ell}^{2} y^{2} + 1\right)} y}{{\ell}^{2} y^{4} + y^{2} - 2 \, m}
s2 = (s1 - b1*diff(mu_1(y), y)).simplify_full() s2
((μ03μ0)β12(μ03μ0)β22)4y4(μ03μ0)P2β12+(μ03μ0)Q2β224((μ03μ0)β1(μ03μ0)β2)2m4y8+22y6(42m1)y44my2+4m2\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{{\left({\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_1}^{2} - {\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_2}^{2}\right)} {\ell}^{4} y^{4} - {\left({\mu_0}^{3} - {\mu_0}\right)} {\mathcal{P}'}^{2} {\beta_1}^{2} + {\left({\mu_0}^{3} - {\mu_0}\right)} {\mathcal{Q}'}^{2} {\beta_2}^{2} - 4 \, {\left({\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_1} - {\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_2}\right)} {\ell}^{2} m}{{\ell}^{4} y^{8} + 2 \, {\ell}^{2} y^{6} - {\left(4 \, {\ell}^{2} m - 1\right)} y^{4} - 4 \, m y^{2} + 4 \, m^{2}}
s2.factor()
(β124y4β224y4P2β12+Q2β224β12m+4β22m)(μ0+1)(μ01)μ0(2y4+y22m)2\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{{\left({\beta_1}^{2} {\ell}^{4} y^{4} - {\beta_2}^{2} {\ell}^{4} y^{4} - {\mathcal{P}'}^{2} {\beta_1}^{2} + {\mathcal{Q}'}^{2} {\beta_2}^{2} - 4 \, {\beta_1} {\ell}^{2} m + 4 \, {\beta_2} {\ell}^{2} m\right)} {\left({\mu_0} + 1\right)} {\left({\mu_0} - 1\right)} {\mu_0}}{{\left({\ell}^{2} y^{4} + y^{2} - 2 \, m\right)}^{2}}

The equation for μ1\mu_1 is thus:

eq_mu1 = diff(mu_1(y), y, 2) + b1*diff(mu_1(y), y) + s2.factor() == 0 eq_mu1
(β124y4β224y4P2β12+Q2β224β12m+4β22m)(μ0+1)(μ01)μ0(2y4+y22m)2+2(22y2+1)yyμ1(y)2y4+y22m+2(y)2μ1(y)=0\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{{\left({\beta_1}^{2} {\ell}^{4} y^{4} - {\beta_2}^{2} {\ell}^{4} y^{4} - {\mathcal{P}'}^{2} {\beta_1}^{2} + {\mathcal{Q}'}^{2} {\beta_2}^{2} - 4 \, {\beta_1} {\ell}^{2} m + 4 \, {\beta_2} {\ell}^{2} m\right)} {\left({\mu_0} + 1\right)} {\left({\mu_0} - 1\right)} {\mu_0}}{{\left({\ell}^{2} y^{4} + y^{2} - 2 \, m\right)}^{2}} + \frac{2 \, {\left(2 \, {\ell}^{2} y^{2} + 1\right)} y \frac{\partial}{\partial y}\mu_{1}\left(y\right)}{{\ell}^{2} y^{4} + y^{2} - 2 \, m} + \frac{\partial^{2}}{(\partial y)^{2}}\mu_{1}\left(y\right) = 0

Given that μ1(y)=sinΘ0  θ1(y)=1μ02  θ1(y),sin2Θ0=2μ01μ02 \mu_1(y) = - \sin\Theta_0 \; \theta_1(y) = - \sqrt{1-\mu_0^2} \; \theta_1(y), \qquad \sin2\Theta_0 = 2\mu_0\sqrt{1-\mu_0^2} and P=P/β12andQ=Q/β12,\mathcal{P}' = \mathcal{P}/\beta_1^2 \qquad\mbox{and}\qquad \mathcal{Q}' = \mathcal{Q}/\beta_1^2, we get for the equation for θ1\theta_1: θ1+2y(22y2+1)2y4+y22mθ1+β22Q2β12P24(β1β2)2m+(β12β22)4y42(2y4+y22m)2sin(2Θ0)=0 \theta_1'' + \frac{2y(2\ell^2 y^2 + 1)}{\ell^2 y^4 + y^2 - 2m} \, \theta_1' + \frac{\beta_2^{-2}\mathcal{Q}^2 - \beta_1^{-2}\mathcal{P}^2 - 4 (\beta_1 - \beta_2) \ell^2 m + (\beta_1^2 - \beta_2^2) \ell^4 y^4}{2(\ell^2 y^4 + y^2 - 2m)^2}\sin(2\Theta_0) = 0 This agrees with Eq. (4.35) of the paper.

Solving the equation for μ1\mu_1

mu1_sol(y) = desolve(eq_mu1, mu_1(y), ivar=y) mu1_sol(y)
K2((μ03μ0)β12(μ03μ0)β22)2y(μ03μ0)(β12β22)2y2+P2β12Q2β222(β12β222β1+2β2)2m2y4+y22mdyK12y4+y22mdy\renewcommand{\Bold}[1]{\mathbf{#1}}K_{2} - \int \frac{{\left({\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_1}^{2} - {\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_2}^{2}\right)} {\ell}^{2} y - {\left({\mu_0}^{3} - {\mu_0}\right)} \int \frac{{\left({\beta_1}^{2} - {\beta_2}^{2}\right)} {\ell}^{2} y^{2} + {\mathcal{P}'}^{2} {\beta_1}^{2} - {\mathcal{Q}'}^{2} {\beta_2}^{2} - 2 \, {\left({\beta_1}^{2} - {\beta_2}^{2} - 2 \, {\beta_1} + 2 \, {\beta_2}\right)} {\ell}^{2} m}{{\ell}^{2} y^{4} + y^{2} - 2 \, m}\,{d y} - K_{1}}{{\ell}^{2} y^{4} + y^{2} - 2 \, m}\,{d y}

Let us check that mu1_sol is indeed a solution of the equation for μ1\mu_1:

eq_mu1.substitute_function(mu_1, mu1_sol).simplify_full()
0=0\renewcommand{\Bold}[1]{\mathbf{#1}}0 = 0
mu1_sol(y)
K2((μ03μ0)β12(μ03μ0)β22)2y(μ03μ0)(β12β22)2y2+P2β12Q2β222(β12β222β1+2β2)2m2y4+y22mdyK12y4+y22mdy\renewcommand{\Bold}[1]{\mathbf{#1}}K_{2} - \int \frac{{\left({\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_1}^{2} - {\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_2}^{2}\right)} {\ell}^{2} y - {\left({\mu_0}^{3} - {\mu_0}\right)} \int \frac{{\left({\beta_1}^{2} - {\beta_2}^{2}\right)} {\ell}^{2} y^{2} + {\mathcal{P}'}^{2} {\beta_1}^{2} - {\mathcal{Q}'}^{2} {\beta_2}^{2} - 2 \, {\left({\beta_1}^{2} - {\beta_2}^{2} - 2 \, {\beta_1} + 2 \, {\beta_2}\right)} {\ell}^{2} m}{{\ell}^{2} y^{4} + y^{2} - 2 \, m}\,{d y} - K_{1}}{{\ell}^{2} y^{4} + y^{2} - 2 \, m}\,{d y}

The innermost integral can be written (β12β22)2  s1(y)+(P2β12Qβ222(β12β222(β1β2))2m)  s2(y) (\beta_1^2 - \beta_2^2) \ell^2 \; s_1(y) + \left({\mathcal{P}'}^2 \beta_1^2 - {\mathcal{Q}'}\beta_2^2 - 2 (\beta_1^2-\beta_2^2 - 2 (\beta_1-\beta_2))\ell^2 m \right) \; s_2(y) with s1(y):=yyˉ22yˉ4+yˉ22mdyˉands2(y):=ydyˉ2yˉ4+yˉ22m. s_1(y) := \int^y \frac{\bar{y}^2}{\ell^2 \bar{y}^4 + \bar{y}^2 - 2m} \, \mathrm{d}\bar{y} \qquad \mbox{and}\qquad s_2(y) := \int^y \frac{\mathrm{d}\bar{y}}{\ell^2 \bar{y}^4 + \bar{y}^2 - 2m} .

Let us evaluate s1s_1 by means of FriCAS:

s1 = integrate(y^2/(l^2*y^4 + y^2 - 2*m), y, algorithm='fricas') s1
121284m+286m+4+184m+2log(12(84m+2)84m+286m+4+184m+286m+4+y)121284m+286m+4+184m+2log(12(84m+2)84m+286m+4+184m+286m+4+y)121284m+286m+4184m+2log(12(84m+2)84m+286m+4184m+286m+4+y)+121284m+286m+4184m+2log(12(84m+2)84m+286m+4184m+286m+4+y)\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{1}{2} \, \sqrt{\frac{1}{2}} \sqrt{-\frac{\frac{8 \, {\ell}^{4} m + {\ell}^{2}}{\sqrt{8 \, {\ell}^{6} m + {\ell}^{4}}} + 1}{8 \, {\ell}^{4} m + {\ell}^{2}}} \log\left(\frac{\sqrt{\frac{1}{2}} {\left(8 \, {\ell}^{4} m + {\ell}^{2}\right)} \sqrt{-\frac{\frac{8 \, {\ell}^{4} m + {\ell}^{2}}{\sqrt{8 \, {\ell}^{6} m + {\ell}^{4}}} + 1}{8 \, {\ell}^{4} m + {\ell}^{2}}}}{\sqrt{8 \, {\ell}^{6} m + {\ell}^{4}}} + y\right) - \frac{1}{2} \, \sqrt{\frac{1}{2}} \sqrt{-\frac{\frac{8 \, {\ell}^{4} m + {\ell}^{2}}{\sqrt{8 \, {\ell}^{6} m + {\ell}^{4}}} + 1}{8 \, {\ell}^{4} m + {\ell}^{2}}} \log\left(-\frac{\sqrt{\frac{1}{2}} {\left(8 \, {\ell}^{4} m + {\ell}^{2}\right)} \sqrt{-\frac{\frac{8 \, {\ell}^{4} m + {\ell}^{2}}{\sqrt{8 \, {\ell}^{6} m + {\ell}^{4}}} + 1}{8 \, {\ell}^{4} m + {\ell}^{2}}}}{\sqrt{8 \, {\ell}^{6} m + {\ell}^{4}}} + y\right) - \frac{1}{2} \, \sqrt{\frac{1}{2}} \sqrt{\frac{\frac{8 \, {\ell}^{4} m + {\ell}^{2}}{\sqrt{8 \, {\ell}^{6} m + {\ell}^{4}}} - 1}{8 \, {\ell}^{4} m + {\ell}^{2}}} \log\left(\frac{\sqrt{\frac{1}{2}} {\left(8 \, {\ell}^{4} m + {\ell}^{2}\right)} \sqrt{\frac{\frac{8 \, {\ell}^{4} m + {\ell}^{2}}{\sqrt{8 \, {\ell}^{6} m + {\ell}^{4}}} - 1}{8 \, {\ell}^{4} m + {\ell}^{2}}}}{\sqrt{8 \, {\ell}^{6} m + {\ell}^{4}}} + y\right) + \frac{1}{2} \, \sqrt{\frac{1}{2}} \sqrt{\frac{\frac{8 \, {\ell}^{4} m + {\ell}^{2}}{\sqrt{8 \, {\ell}^{6} m + {\ell}^{4}}} - 1}{8 \, {\ell}^{4} m + {\ell}^{2}}} \log\left(-\frac{\sqrt{\frac{1}{2}} {\left(8 \, {\ell}^{4} m + {\ell}^{2}\right)} \sqrt{\frac{\frac{8 \, {\ell}^{4} m + {\ell}^{2}}{\sqrt{8 \, {\ell}^{6} m + {\ell}^{4}}} - 1}{8 \, {\ell}^{4} m + {\ell}^{2}}}}{\sqrt{8 \, {\ell}^{6} m + {\ell}^{4}}} + y\right)
s1 = s1.canonicalize_radical().simplify_log() s1
282m82m+1+1log(2(82m+1)14y82m82m+1+12(82m+1)14y+82m82m+1+1)+282m82m+11log(2(82m+1)14y+82m82m+112(82m+1)14y82m82m+11)4(82m+1)34\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{\sqrt{2} \sqrt{8 \, {\ell}^{2} m - \sqrt{8 \, {\ell}^{2} m + 1} + 1} \log\left(\frac{\sqrt{2} {\left(8 \, {\ell}^{2} m + 1\right)}^{\frac{1}{4}} {\ell} y - \sqrt{8 \, {\ell}^{2} m - \sqrt{8 \, {\ell}^{2} m + 1} + 1}}{\sqrt{2} {\left(8 \, {\ell}^{2} m + 1\right)}^{\frac{1}{4}} {\ell} y + \sqrt{8 \, {\ell}^{2} m - \sqrt{8 \, {\ell}^{2} m + 1} + 1}}\right) + \sqrt{2} \sqrt{-8 \, {\ell}^{2} m - \sqrt{8 \, {\ell}^{2} m + 1} - 1} \log\left(\frac{\sqrt{2} {\left(8 \, {\ell}^{2} m + 1\right)}^{\frac{1}{4}} {\ell} y + \sqrt{-8 \, {\ell}^{2} m - \sqrt{8 \, {\ell}^{2} m + 1} - 1}}{\sqrt{2} {\left(8 \, {\ell}^{2} m + 1\right)}^{\frac{1}{4}} {\ell} y - \sqrt{-8 \, {\ell}^{2} m - \sqrt{8 \, {\ell}^{2} m + 1} - 1}}\right)}{4 \, {\left(8 \, {\ell}^{2} m + 1\right)}^{\frac{3}{4}} {\ell}}

Check:

diff(s1, y).simplify_full()
y22y4+y22m\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{y^{2}}{{\ell}^{2} y^{4} + y^{2} - 2 \, m}

Similarly, we evaluate s2s_2 by means of FriCAS:

s2 = integrate(1/(l^2*y^4 + y^2 - 2*m), y, algorithm='fricas') s2
1482m2+m82m3+m2+182m2+mlog(22y+12(82m82m2+m82m3+m2+1)82m2+m82m3+m2+182m2+m)+1482m2+m82m3+m2+182m2+mlog(22y12(82m82m2+m82m3+m2+1)82m2+m82m3+m2+182m2+m)1482m2+m82m3+m2182m2+mlog(22y+12(82m+82m2+m82m3+m2+1)82m2+m82m3+m2182m2+m)+1482m2+m82m3+m2182m2+mlog(22y12(82m+82m2+m82m3+m2+1)82m2+m82m3+m2182m2+m)\renewcommand{\Bold}[1]{\mathbf{#1}}-\frac{1}{4} \, \sqrt{\frac{\frac{8 \, {\ell}^{2} m^{2} + m}{\sqrt{8 \, {\ell}^{2} m^{3} + m^{2}}} + 1}{8 \, {\ell}^{2} m^{2} + m}} \log\left(2 \, {\ell}^{2} y + \frac{1}{2} \, {\left(8 \, {\ell}^{2} m - \frac{8 \, {\ell}^{2} m^{2} + m}{\sqrt{8 \, {\ell}^{2} m^{3} + m^{2}}} + 1\right)} \sqrt{\frac{\frac{8 \, {\ell}^{2} m^{2} + m}{\sqrt{8 \, {\ell}^{2} m^{3} + m^{2}}} + 1}{8 \, {\ell}^{2} m^{2} + m}}\right) + \frac{1}{4} \, \sqrt{\frac{\frac{8 \, {\ell}^{2} m^{2} + m}{\sqrt{8 \, {\ell}^{2} m^{3} + m^{2}}} + 1}{8 \, {\ell}^{2} m^{2} + m}} \log\left(2 \, {\ell}^{2} y - \frac{1}{2} \, {\left(8 \, {\ell}^{2} m - \frac{8 \, {\ell}^{2} m^{2} + m}{\sqrt{8 \, {\ell}^{2} m^{3} + m^{2}}} + 1\right)} \sqrt{\frac{\frac{8 \, {\ell}^{2} m^{2} + m}{\sqrt{8 \, {\ell}^{2} m^{3} + m^{2}}} + 1}{8 \, {\ell}^{2} m^{2} + m}}\right) - \frac{1}{4} \, \sqrt{-\frac{\frac{8 \, {\ell}^{2} m^{2} + m}{\sqrt{8 \, {\ell}^{2} m^{3} + m^{2}}} - 1}{8 \, {\ell}^{2} m^{2} + m}} \log\left(2 \, {\ell}^{2} y + \frac{1}{2} \, {\left(8 \, {\ell}^{2} m + \frac{8 \, {\ell}^{2} m^{2} + m}{\sqrt{8 \, {\ell}^{2} m^{3} + m^{2}}} + 1\right)} \sqrt{-\frac{\frac{8 \, {\ell}^{2} m^{2} + m}{\sqrt{8 \, {\ell}^{2} m^{3} + m^{2}}} - 1}{8 \, {\ell}^{2} m^{2} + m}}\right) + \frac{1}{4} \, \sqrt{-\frac{\frac{8 \, {\ell}^{2} m^{2} + m}{\sqrt{8 \, {\ell}^{2} m^{3} + m^{2}}} - 1}{8 \, {\ell}^{2} m^{2} + m}} \log\left(2 \, {\ell}^{2} y - \frac{1}{2} \, {\left(8 \, {\ell}^{2} m + \frac{8 \, {\ell}^{2} m^{2} + m}{\sqrt{8 \, {\ell}^{2} m^{3} + m^{2}}} + 1\right)} \sqrt{-\frac{\frac{8 \, {\ell}^{2} m^{2} + m}{\sqrt{8 \, {\ell}^{2} m^{3} + m^{2}}} - 1}{8 \, {\ell}^{2} m^{2} + m}}\right)
s2 = s2.canonicalize_radical().simplify_log() s2
82m+82m+11log(4(82m+1)142my82m+82m+11(82m+1+1)4(82m+1)142my+82m+82m+11(82m+1+1))+82m+82m+1+1log(4(82m+1)142my82m+82m+1+1(82m+11)4(82m+1)142my+82m+82m+1+1(82m+11))4(82m+1)34m\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{\sqrt{-8 \, {\ell}^{2} m + \sqrt{8 \, {\ell}^{2} m + 1} - 1} \log\left(\frac{4 \, {\left(8 \, {\ell}^{2} m + 1\right)}^{\frac{1}{4}} {\ell}^{2} \sqrt{m} y - \sqrt{-8 \, {\ell}^{2} m + \sqrt{8 \, {\ell}^{2} m + 1} - 1} {\left(\sqrt{8 \, {\ell}^{2} m + 1} + 1\right)}}{4 \, {\left(8 \, {\ell}^{2} m + 1\right)}^{\frac{1}{4}} {\ell}^{2} \sqrt{m} y + \sqrt{-8 \, {\ell}^{2} m + \sqrt{8 \, {\ell}^{2} m + 1} - 1} {\left(\sqrt{8 \, {\ell}^{2} m + 1} + 1\right)}}\right) + \sqrt{8 \, {\ell}^{2} m + \sqrt{8 \, {\ell}^{2} m + 1} + 1} \log\left(\frac{4 \, {\left(8 \, {\ell}^{2} m + 1\right)}^{\frac{1}{4}} {\ell}^{2} \sqrt{m} y - \sqrt{8 \, {\ell}^{2} m + \sqrt{8 \, {\ell}^{2} m + 1} + 1} {\left(\sqrt{8 \, {\ell}^{2} m + 1} - 1\right)}}{4 \, {\left(8 \, {\ell}^{2} m + 1\right)}^{\frac{1}{4}} {\ell}^{2} \sqrt{m} y + \sqrt{8 \, {\ell}^{2} m + \sqrt{8 \, {\ell}^{2} m + 1} + 1} {\left(\sqrt{8 \, {\ell}^{2} m + 1} - 1\right)}}\right)}{4 \, {\left(8 \, {\ell}^{2} m + 1\right)}^{\frac{3}{4}} \sqrt{m}}

Check:

diff(s2, y).simplify_full()
12y4+y22m\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{1}{{\ell}^{2} y^{4} + y^{2} - 2 \, m}

In the above expressions for s1(y)s_1(y) and s2(y)s_2(y) there appears the factor P=1+82m,\mathfrak{P} = \sqrt{1 + 8\ell^2 m}, which we represent by the symbolic variable B

B = var('B') assume(B > 1)

Let us make BB appear in s1s_1:

s1 = s1.subs({l^2: (B^2 - 1)/(8*m)}).simplify_full() s1
2B2Blog(2ByB2B2By+B2B)+2B2Blog(2By+B2B2ByB2B)4B32\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{\sqrt{2} \sqrt{B^{2} - B} \log\left(\frac{\sqrt{2} \sqrt{B} {\ell} y - \sqrt{B^{2} - B}}{\sqrt{2} \sqrt{B} {\ell} y + \sqrt{B^{2} - B}}\right) + \sqrt{2} \sqrt{-B^{2} - B} \log\left(\frac{\sqrt{2} \sqrt{B} {\ell} y + \sqrt{-B^{2} - B}}{\sqrt{2} \sqrt{B} {\ell} y - \sqrt{-B^{2} - B}}\right)}{4 \, B^{\frac{3}{2}} {\ell}}

In this expression, there appears the term B2B\sqrt{-B^2-B} which is imaginary since B>1B>1. We there rewrite it as iBB+1i\sqrt{B}\sqrt{B+1}:

s1 = s1.subs({sqrt(-B^2 - B): I*sqrt(B)*sqrt(B + 1), sqrt(B^2 - B): sqrt(B)*sqrt(B - 1)}) s1
i2B+1Blog(2By+iB+1B2ByiB+1B)+2B1Blog(2ByB1B2By+B1B)4B32\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{i \, \sqrt{2} \sqrt{B + 1} \sqrt{B} \log\left(\frac{\sqrt{2} \sqrt{B} {\ell} y + i \, \sqrt{B + 1} \sqrt{B}}{\sqrt{2} \sqrt{B} {\ell} y - i \, \sqrt{B + 1} \sqrt{B}}\right) + \sqrt{2} \sqrt{B - 1} \sqrt{B} \log\left(\frac{\sqrt{2} \sqrt{B} {\ell} y - \sqrt{B - 1} \sqrt{B}}{\sqrt{2} \sqrt{B} {\ell} y + \sqrt{B - 1} \sqrt{B}}\right)}{4 \, B^{\frac{3}{2}} {\ell}}
s1 = s1.simplify_log() s1
i2B+1log(2y+iB+12yiB+1)+2B1log(2yB12y+B1)4B\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{i \, \sqrt{2} \sqrt{B + 1} \log\left(\frac{\sqrt{2} {\ell} y + i \, \sqrt{B + 1}}{\sqrt{2} {\ell} y - i \, \sqrt{B + 1}}\right) + \sqrt{2} \sqrt{B - 1} \log\left(\frac{\sqrt{2} {\ell} y - \sqrt{B - 1}}{\sqrt{2} {\ell} y + \sqrt{B - 1}}\right)}{4 \, B {\ell}}

In the first log\log, we recognize the arctan\mathrm{arctan} function, via the identity arctanx=i2ln(i+xix), \mathrm{arctan}\, x = \frac{i}{2} \ln\left( \frac{i + x}{i - x} \right), which we use in the form iln(x+ixi)=2arctan(x)π i \ln\left( \frac{x + i}{x - i} \right) = 2 \mathrm{arctan}(x) - \pi as we can check:

taylor(I*ln((x+I)/(x-I)) - 2*atan(x) + pi, x, 0, 10)
0\renewcommand{\Bold}[1]{\mathbf{#1}}0

Thus, we set, disregarding the additive constant π-\pi,

s1 = sqrt(2)/(4*B*l)*(2*sqrt(B+1)*atan(sqrt(2)*l/sqrt(B+1)*y) + sqrt(B-1)*ln((sqrt(2)*l/sqrt(B-1)*y - 1)/(sqrt(2)*l/sqrt(B-1)*y + 1))) s1
2(2B+1arctan(2yB+1)+B1log(2yB112yB1+1))4B\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{\sqrt{2} {\left(2 \, \sqrt{B + 1} \arctan\left(\frac{\sqrt{2} {\ell} y}{\sqrt{B + 1}}\right) + \sqrt{B - 1} \log\left(\frac{\frac{\sqrt{2} {\ell} y}{\sqrt{B - 1}} - 1}{\frac{\sqrt{2} {\ell} y}{\sqrt{B - 1}} + 1}\right)\right)}}{4 \, B {\ell}}

Let us check that we have indeed a primitive of yy22y4+y22my\mapsto \frac{y^2}{\ell^2 y^4 + y^2 - 2m}:

Ds1 = diff(s1, y).simplify_full() Ds1
42y244y4+42y2B2+1\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{4 \, {\ell}^{2} y^{2}}{4 \, {\ell}^{4} y^{4} + 4 \, {\ell}^{2} y^{2} - B^{2} + 1}
Ds1.subs({B: sqrt(1 + 8*l^2*m)}).simplify_full()
y22y4+y22m\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{y^{2}}{{\ell}^{2} y^{4} + y^{2} - 2 \, m}

Similarly, we can express s2s_2 in terms of BB:

s2 = s2.subs({l^2: (B^2 - 1)/(8*m)}).simplify_full() s2
B2+Blog((B+1)Bmy2B2+Bm(B+1)Bmy+2B2+Bm)+B2+Blog((B1)Bmy2B2+Bm(B1)Bmy+2B2+Bm)4B32m\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{\sqrt{B^{2} + B} \log\left(\frac{{\left(B + 1\right)} \sqrt{B} \sqrt{m} y - 2 \, \sqrt{B^{2} + B} m}{{\left(B + 1\right)} \sqrt{B} \sqrt{m} y + 2 \, \sqrt{B^{2} + B} m}\right) + \sqrt{-B^{2} + B} \log\left(\frac{{\left(B - 1\right)} \sqrt{B} \sqrt{m} y - 2 \, \sqrt{-B^{2} + B} m}{{\left(B - 1\right)} \sqrt{B} \sqrt{m} y + 2 \, \sqrt{-B^{2} + B} m}\right)}{4 \, B^{\frac{3}{2}} \sqrt{m}}

Since B>1B>1, we replace B2+B\sqrt{-B^2 + B} by iBB1i\sqrt{B}\sqrt{B-1}:

s2 = s2.subs({sqrt(-B^2 + B): I*sqrt(B)*sqrt(B - 1), sqrt(B^2 + B): sqrt(B)*sqrt(B + 1)}) s2
B+1Blog((B+1)Bmy2B+1Bm(B+1)Bmy+2B+1Bm)+iB1Blog((B1)Bmy2iB1Bm(B1)Bmy+2iB1Bm)4B32m\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{\sqrt{B + 1} \sqrt{B} \log\left(\frac{{\left(B + 1\right)} \sqrt{B} \sqrt{m} y - 2 \, \sqrt{B + 1} \sqrt{B} m}{{\left(B + 1\right)} \sqrt{B} \sqrt{m} y + 2 \, \sqrt{B + 1} \sqrt{B} m}\right) + i \, \sqrt{B - 1} \sqrt{B} \log\left(\frac{{\left(B - 1\right)} \sqrt{B} \sqrt{m} y - 2 i \, \sqrt{B - 1} \sqrt{B} m}{{\left(B - 1\right)} \sqrt{B} \sqrt{m} y + 2 i \, \sqrt{B - 1} \sqrt{B} m}\right)}{4 \, B^{\frac{3}{2}} \sqrt{m}}
s2 = s2.simplify_log() s2
B+1log((B+1)my2B+1m(B+1)my+2B+1m)+iB1log((B1)my2iB1m(B1)my+2iB1m)4Bm\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{\sqrt{B + 1} \log\left(\frac{{\left(B + 1\right)} \sqrt{m} y - 2 \, \sqrt{B + 1} m}{{\left(B + 1\right)} \sqrt{m} y + 2 \, \sqrt{B + 1} m}\right) + i \, \sqrt{B - 1} \log\left(\frac{{\left(B - 1\right)} \sqrt{m} y - 2 i \, \sqrt{B - 1} m}{{\left(B - 1\right)} \sqrt{m} y + 2 i \, \sqrt{B - 1} m}\right)}{4 \, B \sqrt{m}}

Again, we use the identity iln(x+ixi)=2arctan(x)π i \ln\left( \frac{x + i}{x - i} \right) = 2 \mathrm{arctan}(x) - \pi to rewrite s2s_2 as

s2 = 1/(4*B*sqrt(m))*(sqrt(B+1)*ln( (sqrt(B+1)/(2*sqrt(m))*y - 1) /(sqrt(B+1)/(2*sqrt(m))*y + 1) ) - 2*sqrt(B-1)*atan(sqrt(B-1)/(2*sqrt(m))*y)) s2
2B1arctan(B1y2m)B+1log(B+1ym2B+1ym+2)4Bm\renewcommand{\Bold}[1]{\mathbf{#1}}-\frac{2 \, \sqrt{B - 1} \arctan\left(\frac{\sqrt{B - 1} y}{2 \, \sqrt{m}}\right) - \sqrt{B + 1} \log\left(\frac{\frac{\sqrt{B + 1} y}{\sqrt{m}} - 2}{\frac{\sqrt{B + 1} y}{\sqrt{m}} + 2}\right)}{4 \, B \sqrt{m}}

Let us check that we have indeed a primitive of y12y4+y22my\mapsto \frac{1}{\ell^2 y^4 + y^2 - 2m}:

Ds2 = diff(s2, y).simplify_full() Ds2
8m(B21)y4+8my216m2\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{8 \, m}{{\left(B^{2} - 1\right)} y^{4} + 8 \, m y^{2} - 16 \, m^{2}}
Ds2.subs({B: sqrt(1 + 8*l^2*m)}).simplify_full()
12y4+y22m\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{1}{{\ell}^{2} y^{4} + y^{2} - 2 \, m}

Given the above expressions for s1(y)s_1(y) and s2(y)s_2(y) we rewrite the solution

mu1_sol(y)
K2((μ03μ0)β12(μ03μ0)β22)2y(μ03μ0)(β12β22)2y2+P2β12Q2β222(β12β222β1+2β2)2m2y4+y22mdyK12y4+y22mdy\renewcommand{\Bold}[1]{\mathbf{#1}}K_{2} - \int \frac{{\left({\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_1}^{2} - {\left({\mu_0}^{3} - {\mu_0}\right)} {\beta_2}^{2}\right)} {\ell}^{2} y - {\left({\mu_0}^{3} - {\mu_0}\right)} \int \frac{{\left({\beta_1}^{2} - {\beta_2}^{2}\right)} {\ell}^{2} y^{2} + {\mathcal{P}'}^{2} {\beta_1}^{2} - {\mathcal{Q}'}^{2} {\beta_2}^{2} - 2 \, {\left({\beta_1}^{2} - {\beta_2}^{2} - 2 \, {\beta_1} + 2 \, {\beta_2}\right)} {\ell}^{2} m}{{\ell}^{2} y^{4} + y^{2} - 2 \, m}\,{d y} - K_{1}}{{\ell}^{2} y^{4} + y^{2} - 2 \, m}\,{d y}
C1, C2 = var('C_1', 'C_2') # mu1 / mu0(1-mu0^2) : mu1s0 = - C2/(Mu0*sqrt(1-Mu0^2)) - C1/(Mu0*sqrt(1-Mu0^2))*s2 \ + integrate(((beta1^2 - beta2^2)*l^2*y - (beta1^2 - beta2^2)*l^2 * s1 - (P^2*beta1^2 - Q^2*beta2^2 - 2*(beta1^2 - beta2^2 - 2*(beta1-beta2))*l^2*m) * s2) / (l^2*y^4 + y^2 - 2*m), y, hold=True) mu1s0
C2μ02+1μ0+(2B1arctan(B1y2m)B+1log(B+1ym2B+1ym+2))C14μ02+1Bμ0m+4(β12β22)2y2(β12β22)(2B+1arctan(2yB+1)+B1log(2yB112yB1+1))B+(P2β12Q2β222(β12β222β1+2β2)2m)(2B1arctan(B1y2m)B+1log(B+1ym2B+1ym+2))Bm4(2y4+y22m)dy\renewcommand{\Bold}[1]{\mathbf{#1}}-\frac{C_{2}}{\sqrt{-{\mu_0}^{2} + 1} {\mu_0}} + \frac{{\left(2 \, \sqrt{B - 1} \arctan\left(\frac{\sqrt{B - 1} y}{2 \, \sqrt{m}}\right) - \sqrt{B + 1} \log\left(\frac{\frac{\sqrt{B + 1} y}{\sqrt{m}} - 2}{\frac{\sqrt{B + 1} y}{\sqrt{m}} + 2}\right)\right)} C_{1}}{4 \, \sqrt{-{\mu_0}^{2} + 1} B {\mu_0} \sqrt{m}} + \int \frac{4 \, {\left({\beta_1}^{2} - {\beta_2}^{2}\right)} {\ell}^{2} y - \frac{\sqrt{2} {\left({\beta_1}^{2} - {\beta_2}^{2}\right)} {\left(2 \, \sqrt{B + 1} \arctan\left(\frac{\sqrt{2} {\ell} y}{\sqrt{B + 1}}\right) + \sqrt{B - 1} \log\left(\frac{\frac{\sqrt{2} {\ell} y}{\sqrt{B - 1}} - 1}{\frac{\sqrt{2} {\ell} y}{\sqrt{B - 1}} + 1}\right)\right)} {\ell}}{B} + \frac{{\left({\mathcal{P}'}^{2} {\beta_1}^{2} - {\mathcal{Q}'}^{2} {\beta_2}^{2} - 2 \, {\left({\beta_1}^{2} - {\beta_2}^{2} - 2 \, {\beta_1} + 2 \, {\beta_2}\right)} {\ell}^{2} m\right)} {\left(2 \, \sqrt{B - 1} \arctan\left(\frac{\sqrt{B - 1} y}{2 \, \sqrt{m}}\right) - \sqrt{B + 1} \log\left(\frac{\frac{\sqrt{B + 1} y}{\sqrt{m}} - 2}{\frac{\sqrt{B + 1} y}{\sqrt{m}} + 2}\right)\right)}}{B \sqrt{m}}}{4 \, {\left({\ell}^{2} y^{4} + y^{2} - 2 \, m\right)}}\,{d y}
mu1_sol(y) = mu1s0 * Mu0*(1-Mu0^2) mu1_sol(y)
14(μ021)μ0(4C2μ02+1μ0(2B1arctan(B1y2m)B+1log(B+1ym2B+1ym+2))C1μ02+1Bμ0m44(β12β22)2y2(β12β22)(2B+1arctan(2yB+1)+B1log(2yB112yB1+1))B+(P2β12Q2β222(β12β222β1+2β2)2m)(2B1arctan(B1y2m)B+1log(B+1ym2B+1ym+2))Bm4(2y4+y22m)dy)\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{1}{4} \, {\left({\mu_0}^{2} - 1\right)} {\mu_0} {\left(\frac{4 \, C_{2}}{\sqrt{-{\mu_0}^{2} + 1} {\mu_0}} - \frac{{\left(2 \, \sqrt{B - 1} \arctan\left(\frac{\sqrt{B - 1} y}{2 \, \sqrt{m}}\right) - \sqrt{B + 1} \log\left(\frac{\frac{\sqrt{B + 1} y}{\sqrt{m}} - 2}{\frac{\sqrt{B + 1} y}{\sqrt{m}} + 2}\right)\right)} C_{1}}{\sqrt{-{\mu_0}^{2} + 1} B {\mu_0} \sqrt{m}} - 4 \, \int \frac{4 \, {\left({\beta_1}^{2} - {\beta_2}^{2}\right)} {\ell}^{2} y - \frac{\sqrt{2} {\left({\beta_1}^{2} - {\beta_2}^{2}\right)} {\left(2 \, \sqrt{B + 1} \arctan\left(\frac{\sqrt{2} {\ell} y}{\sqrt{B + 1}}\right) + \sqrt{B - 1} \log\left(\frac{\frac{\sqrt{2} {\ell} y}{\sqrt{B - 1}} - 1}{\frac{\sqrt{2} {\ell} y}{\sqrt{B - 1}} + 1}\right)\right)} {\ell}}{B} + \frac{{\left({\mathcal{P}'}^{2} {\beta_1}^{2} - {\mathcal{Q}'}^{2} {\beta_2}^{2} - 2 \, {\left({\beta_1}^{2} - {\beta_2}^{2} - 2 \, {\beta_1} + 2 \, {\beta_2}\right)} {\ell}^{2} m\right)} {\left(2 \, \sqrt{B - 1} \arctan\left(\frac{\sqrt{B - 1} y}{2 \, \sqrt{m}}\right) - \sqrt{B + 1} \log\left(\frac{\frac{\sqrt{B + 1} y}{\sqrt{m}} - 2}{\frac{\sqrt{B + 1} y}{\sqrt{m}} + 2}\right)\right)}}{B \sqrt{m}}}{4 \, {\left({\ell}^{2} y^{4} + y^{2} - 2 \, m\right)}}\,{d y}\right)}

Let us check that we do have a solution of the equation for μ1\mu_1:

eq_mu1.substitute_function(mu_1, mu1_sol).simplify_full().subs({B: sqrt(1 + 8*l^2*m)}).simplify_full()
0=0\renewcommand{\Bold}[1]{\mathbf{#1}}0 = 0

Conjugate momenta

def conjugate_momenta(lagr, qs, var): r""" Compute the conjugate momenta from a given Lagrangian. INPUT: - ``lagr`` -- symbolic expression representing the Lagrangian density - ``qs`` -- either a single symbolic function or a list/tuple of symbolic functions, representing the `q`'s; these functions must appear in ``lagr`` up to at most their first derivatives - ``var`` -- either a single variable, typically `t` (1-dimensional problem) or a list/tuple of symbolic variables; in the latter case the time coordinate must the first one OUTPUT: - list of conjugate momenta; if only one function is involved, the single conjugate momentum is returned instead. """ if not isinstance(qs, (list, tuple)): qs = [qs] if not isinstance(var, (list, tuple)): var = [var] n = len(qs) d = len(var) dqvt = [SR.var('qxxxx{}_t'.format(q)) for q in qs] subs = {diff(qs[i](*var), var[0]): dqvt[i] for i in range(n)} subs_inv = {dqvt[i]: diff(qs[i](*var), var[0]) for i in range(n)} lg = lagr.substitute(subs) ps = [diff(lg, dotq).simplify_full().substitute(subs_inv) for dotq in dqvt] if n == 1: return ps[0] return ps
pis = conjugate_momenta(L_a2, [Phi_1, Psi_1], y) pis
[(μ021)a2β122y4yΦ1(y)(μ021)a2β12y2yΦ1(y)+2(μ021)a2β12myΦ1(y),μ02a2β222y4yΨ1(y)+μ02a2β22y2yΨ1(y)2μ02a2β22myΨ1(y)]\renewcommand{\Bold}[1]{\mathbf{#1}}\left[-{\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} {\ell}^{2} y^{4} \frac{\partial}{\partial y}\Phi_{1}\left(y\right) - {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} y^{2} \frac{\partial}{\partial y}\Phi_{1}\left(y\right) + 2 \, {\left({\mu_0}^{2} - 1\right)} a^{2} {\beta_1}^{2} m \frac{\partial}{\partial y}\Phi_{1}\left(y\right), {\mu_0}^{2} a^{2} {\beta_2}^{2} {\ell}^{2} y^{4} \frac{\partial}{\partial y}\Psi_{1}\left(y\right) + {\mu_0}^{2} a^{2} {\beta_2}^{2} y^{2} \frac{\partial}{\partial y}\Psi_{1}\left(y\right) - 2 \, {\mu_0}^{2} a^{2} {\beta_2}^{2} m \frac{\partial}{\partial y}\Psi_{1}\left(y\right)\right]
pi_phi_y = (pis[0]/(a*beta1)).substitute_function(Phi_1, Phi1_sol).simplify_full() pi_phi_y
(μ021)Paβ1\renewcommand{\Bold}[1]{\mathbf{#1}}-{\left({\mu_0}^{2} - 1\right)} {\mathcal{P}'} a {\beta_1}
pi_psi_y = (pis[1]/(a*beta2)).substitute_function(Psi_1, Psi1_sol).simplify_full() pi_psi_y
μ02Qaβ2\renewcommand{\Bold}[1]{\mathbf{#1}}{\mu_0}^{2} {\mathcal{Q}'} a {\beta_2}
pis4 = conjugate_momenta(L_a4, [Phi_1, Psi_1, mu_1], y)
pis4[2]
a42y4yμ1(y)+a4y2yμ1(y)2a4myμ1(y)μ021\renewcommand{\Bold}[1]{\mathbf{#1}}-\frac{a^{4} {\ell}^{2} y^{4} \frac{\partial}{\partial y}\mu_{1}\left(y\right) + a^{4} y^{2} \frac{\partial}{\partial y}\mu_{1}\left(y\right) - 2 \, a^{4} m \frac{\partial}{\partial y}\mu_{1}\left(y\right)}{{\mu_0}^{2} - 1}

The quantity πθy/(a2sinΘ0cosΘ0)\pi_\theta^y / (a^2 \sin\Theta_0\cos\Theta_0):

pi_theta_y_a2sT0 = (- pis4[2] / (a^4*Mu0)).substitute_function(mu_1, mu1_sol).simplify_full() pi_theta_y_a2sT0 = pi_theta_y_a2sT0.subs({B: sqrt(1 + 8*l^2*m)}).simplify_full() pi_theta_y_a2sT0
(2(2μ0β122μ0β22)marctan(2y82m+1+1)+(μ0P2β12μ0Q2β222(μ0β12μ0β222μ0β1+2μ0β2)2m)log(my82m+1+12mmy82m+1+1+2m))μ02+182m+1+1+((2μ0β122μ0β22)mlog(2y82m+1182m+1+12y82m+11+82m+11)2(μ0P2β12μ0Q2β222(μ0β12μ0β222μ0β1+2μ0β2)2m)arctan(y82m+112m))μ02+182m+114((μ0β12μ0β22)μ02+12myC1m)82m+1482m+1μ02+1μ0m\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{{\left(2 \, {\left(\sqrt{2} {\mu_0} {\beta_1}^{2} - \sqrt{2} {\mu_0} {\beta_2}^{2}\right)} {\ell} \sqrt{m} \arctan\left(\frac{\sqrt{2} {\ell} y}{\sqrt{\sqrt{8 \, {\ell}^{2} m + 1} + 1}}\right) + {\left({\mu_0} {\mathcal{P}'}^{2} {\beta_1}^{2} - {\mu_0} {\mathcal{Q}'}^{2} {\beta_2}^{2} - 2 \, {\left({\mu_0} {\beta_1}^{2} - {\mu_0} {\beta_2}^{2} - 2 \, {\mu_0} {\beta_1} + 2 \, {\mu_0} {\beta_2}\right)} {\ell}^{2} m\right)} \log\left(\frac{\sqrt{m} y \sqrt{\sqrt{8 \, {\ell}^{2} m + 1} + 1} - 2 \, m}{\sqrt{m} y \sqrt{\sqrt{8 \, {\ell}^{2} m + 1} + 1} + 2 \, m}\right)\right)} \sqrt{-{\mu_0}^{2} + 1} \sqrt{\sqrt{8 \, {\ell}^{2} m + 1} + 1} + {\left({\left(\sqrt{2} {\mu_0} {\beta_1}^{2} - \sqrt{2} {\mu_0} {\beta_2}^{2}\right)} {\ell} \sqrt{m} \log\left(\frac{\sqrt{2} {\ell} y \sqrt{\sqrt{8 \, {\ell}^{2} m + 1} - 1} - \sqrt{8 \, {\ell}^{2} m + 1} + 1}{\sqrt{2} {\ell} y \sqrt{\sqrt{8 \, {\ell}^{2} m + 1} - 1} + \sqrt{8 \, {\ell}^{2} m + 1} - 1}\right) - 2 \, {\left({\mu_0} {\mathcal{P}'}^{2} {\beta_1}^{2} - {\mu_0} {\mathcal{Q}'}^{2} {\beta_2}^{2} - 2 \, {\left({\mu_0} {\beta_1}^{2} - {\mu_0} {\beta_2}^{2} - 2 \, {\mu_0} {\beta_1} + 2 \, {\mu_0} {\beta_2}\right)} {\ell}^{2} m\right)} \arctan\left(\frac{y \sqrt{\sqrt{8 \, {\ell}^{2} m + 1} - 1}}{2 \, \sqrt{m}}\right)\right)} \sqrt{-{\mu_0}^{2} + 1} \sqrt{\sqrt{8 \, {\ell}^{2} m + 1} - 1} - 4 \, {\left({\left({\mu_0} {\beta_1}^{2} - {\mu_0} {\beta_2}^{2}\right)} \sqrt{-{\mu_0}^{2} + 1} {\ell}^{2} \sqrt{m} y - C_{1} \sqrt{m}\right)} \sqrt{8 \, {\ell}^{2} m + 1}}{4 \, \sqrt{8 \, {\ell}^{2} m + 1} \sqrt{-{\mu_0}^{2} + 1} {\mu_0} \sqrt{m}}
pi_theta_y_a2sT0.numerator().subs({l^2: (B^2 - 1)/(8*m)}).simplify_full()
16BC1m32(2(2(B21)μ0β1+(4μ0P2(B21)μ0)β122(B21)μ0β2(4μ0Q2(B21)μ0)β22)B1marctan(B1y2m)(2(B21)μ0β1+(4μ0P2(B21)μ0)β122(B21)μ0β2(4μ0Q2(B21)μ0)β22)B+1mlog(B+1my2mB+1my+2m)2(4(2μ0β122μ0β22)B+1marctan(2yB+1)+2(2μ0β122μ0β22)B1mlog(2B1yB+12B1y+B1)((B3B)μ0β12(B3B)μ0β22)y)m)μ02+14m\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{16 \, B C_{1} m^{\frac{3}{2}} - {\left(2 \, {\left(2 \, {\left(B^{2} - 1\right)} {\mu_0} {\beta_1} + {\left(4 \, {\mu_0} {\mathcal{P}'}^{2} - {\left(B^{2} - 1\right)} {\mu_0}\right)} {\beta_1}^{2} - 2 \, {\left(B^{2} - 1\right)} {\mu_0} {\beta_2} - {\left(4 \, {\mu_0} {\mathcal{Q}'}^{2} - {\left(B^{2} - 1\right)} {\mu_0}\right)} {\beta_2}^{2}\right)} \sqrt{B - 1} m \arctan\left(\frac{\sqrt{B - 1} y}{2 \, \sqrt{m}}\right) - {\left(2 \, {\left(B^{2} - 1\right)} {\mu_0} {\beta_1} + {\left(4 \, {\mu_0} {\mathcal{P}'}^{2} - {\left(B^{2} - 1\right)} {\mu_0}\right)} {\beta_1}^{2} - 2 \, {\left(B^{2} - 1\right)} {\mu_0} {\beta_2} - {\left(4 \, {\mu_0} {\mathcal{Q}'}^{2} - {\left(B^{2} - 1\right)} {\mu_0}\right)} {\beta_2}^{2}\right)} \sqrt{B + 1} m \log\left(\frac{\sqrt{B + 1} \sqrt{m} y - 2 \, m}{\sqrt{B + 1} \sqrt{m} y + 2 \, m}\right) - 2 \, {\left(4 \, {\left(\sqrt{2} {\mu_0} {\beta_1}^{2} - \sqrt{2} {\mu_0} {\beta_2}^{2}\right)} \sqrt{B + 1} {\ell} m \arctan\left(\frac{\sqrt{2} {\ell} y}{\sqrt{B + 1}}\right) + 2 \, {\left(\sqrt{2} {\mu_0} {\beta_1}^{2} - \sqrt{2} {\mu_0} {\beta_2}^{2}\right)} \sqrt{B - 1} {\ell} m \log\left(\frac{\sqrt{2} \sqrt{B - 1} {\ell} y - B + 1}{\sqrt{2} \sqrt{B - 1} {\ell} y + B - 1}\right) - {\left({\left(B^{3} - B\right)} {\mu_0} {\beta_1}^{2} - {\left(B^{3} - B\right)} {\mu_0} {\beta_2}^{2}\right)} y\right)} \sqrt{m}\right)} \sqrt{-{\mu_0}^{2} + 1}}{4 \, m}
pi_theta_y_a2sT0.denominator()
482m+1μ02+1μ0m\renewcommand{\Bold}[1]{\mathbf{#1}}4 \, \sqrt{8 \, {\ell}^{2} m + 1} \sqrt{-{\mu_0}^{2} + 1} {\mu_0} \sqrt{m}

The quantity πθy(a2/2)sin2Θ0+(β12β22)2yC1sinΘ0cosΘ0\frac{\pi_\theta^y}{(a^2/2) \sin 2\Theta_0} + (\beta_1^2 - \beta_2^2)\ell^2 y - \frac{C_1}{\sin\Theta_0\cos\Theta_0}

part1 = - (beta1^2 - beta2^2)*l^2*y + C1/(Mu0*sqrt(1-Mu0^2)) s = (pi_theta_y_a2sT0 - part1).simplify_full() s
(2(2β122β22)marctan(2y82m+1+1)+(P2β12Q2β222(β12β222β1+2β2)2m)log(my82m+1+12mmy82m+1+1+2m))82m+1+1+((2β122β22)mlog(2y82m+1182m+1+12y82m+11+82m+11)2(P2β12Q2β222(β12β222β1+2β2)2m)arctan(y82m+112m))82m+11482m+1m\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{{\left(2 \, {\left(\sqrt{2} {\beta_1}^{2} - \sqrt{2} {\beta_2}^{2}\right)} {\ell} \sqrt{m} \arctan\left(\frac{\sqrt{2} {\ell} y}{\sqrt{\sqrt{8 \, {\ell}^{2} m + 1} + 1}}\right) + {\left({\mathcal{P}'}^{2} {\beta_1}^{2} - {\mathcal{Q}'}^{2} {\beta_2}^{2} - 2 \, {\left({\beta_1}^{2} - {\beta_2}^{2} - 2 \, {\beta_1} + 2 \, {\beta_2}\right)} {\ell}^{2} m\right)} \log\left(\frac{\sqrt{m} y \sqrt{\sqrt{8 \, {\ell}^{2} m + 1} + 1} - 2 \, m}{\sqrt{m} y \sqrt{\sqrt{8 \, {\ell}^{2} m + 1} + 1} + 2 \, m}\right)\right)} \sqrt{\sqrt{8 \, {\ell}^{2} m + 1} + 1} + {\left({\left(\sqrt{2} {\beta_1}^{2} - \sqrt{2} {\beta_2}^{2}\right)} {\ell} \sqrt{m} \log\left(\frac{\sqrt{2} {\ell} y \sqrt{\sqrt{8 \, {\ell}^{2} m + 1} - 1} - \sqrt{8 \, {\ell}^{2} m + 1} + 1}{\sqrt{2} {\ell} y \sqrt{\sqrt{8 \, {\ell}^{2} m + 1} - 1} + \sqrt{8 \, {\ell}^{2} m + 1} - 1}\right) - 2 \, {\left({\mathcal{P}'}^{2} {\beta_1}^{2} - {\mathcal{Q}'}^{2} {\beta_2}^{2} - 2 \, {\left({\beta_1}^{2} - {\beta_2}^{2} - 2 \, {\beta_1} + 2 \, {\beta_2}\right)} {\ell}^{2} m\right)} \arctan\left(\frac{y \sqrt{\sqrt{8 \, {\ell}^{2} m + 1} - 1}}{2 \, \sqrt{m}}\right)\right)} \sqrt{\sqrt{8 \, {\ell}^{2} m + 1} - 1}}{4 \, \sqrt{8 \, {\ell}^{2} m + 1} \sqrt{m}}

Let us perform an expansion in 1/y1/y for y+y\rightarrow +\infty:

u = var('u') assume(u > 0) s = s.subs({y: 1/u}).simplify_log() assume(l>0) s = s.taylor(u, 0, 2) s = s.subs({u: 1/y}) s
(2πβ122πβ22)m82m+1+1(πP2β12πQ2β222(πβ12πβ222πβ1+2πβ2)2m)82m+11482m+1mβ12β22y\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{{\left(\sqrt{2} \pi {\beta_1}^{2} - \sqrt{2} \pi {\beta_2}^{2}\right)} {\ell} \sqrt{m} \sqrt{\sqrt{8 \, {\ell}^{2} m + 1} + 1} - {\left(\pi {\mathcal{P}'}^{2} {\beta_1}^{2} - \pi {\mathcal{Q}'}^{2} {\beta_2}^{2} - 2 \, {\left(\pi {\beta_1}^{2} - \pi {\beta_2}^{2} - 2 \, \pi {\beta_1} + 2 \, \pi {\beta_2}\right)} {\ell}^{2} m\right)} \sqrt{\sqrt{8 \, {\ell}^{2} m + 1} - 1}}{4 \, \sqrt{8 \, {\ell}^{2} m + 1} \sqrt{m}} - \frac{{\beta_1}^{2} - {\beta_2}^{2}}{y}
s
(2πβ122πβ22)m82m+1+1(πP2β12πQ2β222(πβ12πβ222πβ1+2πβ2)2m)82m+11482m+1mβ12β22y\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{{\left(\sqrt{2} \pi {\beta_1}^{2} - \sqrt{2} \pi {\beta_2}^{2}\right)} {\ell} \sqrt{m} \sqrt{\sqrt{8 \, {\ell}^{2} m + 1} + 1} - {\left(\pi {\mathcal{P}'}^{2} {\beta_1}^{2} - \pi {\mathcal{Q}'}^{2} {\beta_2}^{2} - 2 \, {\left(\pi {\beta_1}^{2} - \pi {\beta_2}^{2} - 2 \, \pi {\beta_1} + 2 \, \pi {\beta_2}\right)} {\ell}^{2} m\right)} \sqrt{\sqrt{8 \, {\ell}^{2} m + 1} - 1}}{4 \, \sqrt{8 \, {\ell}^{2} m + 1} \sqrt{m}} - \frac{{\beta_1}^{2} - {\beta_2}^{2}}{y}

Final result for πθy(a2/2)sin2Θ0\frac{\pi_\theta^y}{(a^2/2) \sin 2\Theta_0}:

part1 + s
(β12β22)2y+(2πβ122πβ22)m82m+1+1(πP2β12πQ2β222(πβ12πβ222πβ1+2πβ2)2m)82m+11482m+1mβ12β22y+C1μ02+1μ0\renewcommand{\Bold}[1]{\mathbf{#1}}-{\left({\beta_1}^{2} - {\beta_2}^{2}\right)} {\ell}^{2} y + \frac{{\left(\sqrt{2} \pi {\beta_1}^{2} - \sqrt{2} \pi {\beta_2}^{2}\right)} {\ell} \sqrt{m} \sqrt{\sqrt{8 \, {\ell}^{2} m + 1} + 1} - {\left(\pi {\mathcal{P}'}^{2} {\beta_1}^{2} - \pi {\mathcal{Q}'}^{2} {\beta_2}^{2} - 2 \, {\left(\pi {\beta_1}^{2} - \pi {\beta_2}^{2} - 2 \, \pi {\beta_1} + 2 \, \pi {\beta_2}\right)} {\ell}^{2} m\right)} \sqrt{\sqrt{8 \, {\ell}^{2} m + 1} - 1}}{4 \, \sqrt{8 \, {\ell}^{2} m + 1} \sqrt{m}} - \frac{{\beta_1}^{2} - {\beta_2}^{2}}{y} + \frac{C_{1}}{\sqrt{-{\mu_0}^{2} + 1} {\mu_0}}

The terms in C1C_1, yy and y1y^{-1} agree with Eq. (4.37) of the paper.