Contact Us!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

| Download

Jupyter notebook Lifshitz_coordinates.ipynb

Project: Lifshitz BH
Views: 195
Kernel: SageMath 6.10

Various coordinate systems in anisotropic 5d Lifshitz spacetimes

When ν=1\nu=1, all these coordinate systems cover the Poincaré patch of AdS5{\rm AdS}_5 spacetime.

%display latex
M = Manifold(5, 'M') print M
5-dimensional differentiable manifold M

For ν=1\nu=1, MM is nothing but the Poincaré patch of AdS5{\rm AdS}_5.

Coordinates (t,x,y1,y2,r)(t,x,y_1,y_2,r)

X1.<t,x,y1,y2,r> = M.chart(r't x y1:y_1 y2:y_2 r') X1
var('nu', latex_name=r'\nu', domain='real') g = M.lorentzian_metric('g') g[0,0] = -exp(2*nu*r) g[1,1] = exp(2*nu*r) g[2,2] = exp(2*r) g[3,3] = g[2,2] g[4,4] = 1 g.display()

Coordinate r~=er\tilde r = e^r

X2.<t,x,y1,y2,R> = M.chart(r't x y1:y_1 y2:y_2 R:\tilde{r}:(0,+oo)') X2
X2_to_X1 = X2.transition_map(X1, [t, x, y1, y2, ln(R)]) X2_to_X1.display()
X2_to_X1.inverse().display()
g.display(X2.frame(), X2)

Coordinate ρ=r~ν\rho = {\tilde r}^\nu

X3.<t,x,y1,y2,rho> = M.chart(r't x y1:y_1 y2:y_2 rho:\rho:(0,+oo)') X3
X2_to_X3 = X2.transition_map(X3, [t, x, y1, y2, R^nu]) X2_to_X3.display()
X2_to_X3.set_inverse(t, x, y1, y2, rho^(1/nu), verbose=True)
Check of the inverse coordinate transformation: t == t x == x y1 == y1 y2 == y2 R == R t == t x == x y1 == y1 y2 == y2 rho == rho
X2_to_X3.inverse().display()
g.display(X3.frame(), X3)

Coordinate z=1/ρ=r~νz = 1/\rho = {\tilde r}^{-\nu}

X4.<t,x,y1,y2,z> = M.chart(r't x y1:y_1 y2:y_2 z:(0,+oo)') X4
X3_to_X4 = X3.transition_map(X4, [t, x, y1, y2, 1/rho]) X3_to_X4.display()
X3_to_X4.inverse().display()
g.display(X4.frame(), X4)

When ν=1\nu=1, (t,x,y1,y2,z)(t,x,y_1,y_2,z) are the so-called Poincaré coordinates, i.e. the standard coordinates on the Poincaré patch of AdS5{\rm AdS}_5 spacetime.