Kernel: SageMath 9.2
In [1]:
#4.1.7 a=1 t=srange (0, 50, 0.1) var ("X", "V") sol= desolve_odeint((V, -X-(a*V^3-V)), ics= [5, 10], dvars=[X, V], times=t) list_plot(list(zip(t, sol[:,0])), axes_labels=["time", "Vprime"]) + list_plot(list(zip(t, sol[:,1])), color="red")
Out[1]:
In [2]:
#4.1.7 a=1 t=srange (0, 50, 0.1) var ("X", "V") sol= desolve_odeint((V, -X-(a*V^3-V)), ics= [5, 10], dvars=[X, V], times=t) list_plot(list(zip(sol[:,0], sol[:,1])), axes_labels=["Xprime", "Vprime"], plotjoined=True)
Out[2]:
In [3]:
#4.1.7 a=5 t=srange (0, 50, 0.1) var ("X", "V") sol= desolve_odeint((V, -X-(a*V^3-V)), ics= [5, 10], dvars=[X, V], times=t) list_plot(list(zip(t, sol[:,0])), axes_labels=["time", "Vprime"]) + list_plot(list(zip(t, sol[:,1])), color="red")
Out[3]:
In [4]:
#4.1.7 a=5 t=srange (0, 50, 0.1) var ("X", "V") sol= desolve_odeint((V, -X-(a*V^3-V)), ics= [5, 10], dvars=[X, V], times=t) list_plot(list(zip(sol[:,0], sol[:,1])), axes_labels=["Xprime", "Vprime"], plotjoined=True)
Out[4]:
In [5]:
#4.1.7 a=10 t=srange (0, 50, 0.1) var ("X", "V") sol= desolve_odeint((V, -X-(a*V^3-V)), ics= [5, 10], dvars=[X, V], times=t) list_plot(list(zip(t, sol[:,0])), axes_labels=["time", "Vprime"]) + list_plot(list(zip(t, sol[:,1])), color="red")
Out[5]:
In [6]:
#4.1.7 a=10 t=srange (0, 50, 0.1) var ("X", "V") sol= desolve_odeint((V, -X-(a*V^3-V)), ics= [5, 10], dvars=[X, V], times=t) list_plot(list(zip(sol[:,0], sol[:,1])), axes_labels=["Xprime", "Vprime"], plotjoined=True)
Out[6]:
In [0]:
#4.1.7 The parameter of a has an inverse relationship with the output of X' and V'. As you increase a, the subsequent time series and trajectories decrease.
In [7]:
#4.2.1 @interact def system (n=8): var("H", "P", "G") t=srange (0, 100, 0.1) k1=k2=k3=0.2 Hprime= (1/(1+G^n))-(k1*H) Pprime= H-(k2*P) Gprime= P-(k3*G) sol= desolve_odeint([Hprime, Pprime, Gprime], ics=[1, 1, 1], dvars=[H, P, G], times=t) p= list_plot(list(zip(t, sol[:,0])), plotjoined=True, axes_labels= ["Time", "Hormone Secretion"]) + list_plot(list(zip(t, sol[:,1])), plotjoined=True, color="red") + list_plot(list(zip(t, sol[:,0])), plotjoined=True) show (p)
Out[7]:
Interactive function <function system at 0x7f0030fb2c10> with 1 widget
n: IntSlider(value=8, description='n'…
In [12]:
#4.2.2 var("H", "P", "G") t=srange (0, 100, 0.1) k1=k2=k3=0.2 n=8 Hprime= (1/(1+G^n))-(k1*H) Pprime= H-(k2*P) Gprime= P-(k3*G) sol= desolve_odeint([Hprime, Pprime, Gprime], ics=[10, 20, 15], dvars= [H, P, G], times=t) list_plot(sol)
Out[12]:
In [14]:
#4.2.2 var("H", "P", "G") t=srange (0, 100, 0.1) k1=k2=k3=0.2 n=8 Hprime= (1/(1+G^n))-(k1*H) Pprime= H-(k2*P) Gprime= P-(k3*G) sol= desolve_odeint([Hprime, Pprime, Gprime], ics=[15, 25, 20], dvars= [H, P, G], times=t) list_plot(sol)
Out[14]:
In [15]:
#4.2.2 var("H", "P", "G") t=srange (0, 100, 0.1) k1=k2=k3=0.2 n=8 Hprime= (1/(1+G^n))-(k1*H) Pprime= H-(k2*P) Gprime= P-(k3*G) sol= desolve_odeint([Hprime, Pprime, Gprime], ics=[20, 30, 50], dvars= [H, P, G], times=t) list_plot(sol)
Out[15]:
In [19]:
#4.2.3 @interact def system (n=(1, 10)): var("H", "G") t=srange (0, 100, 0.1) k1=k2=0.2 Hprime= (1/(1+G^n))-(k1*n) Gprime= H- (k3*G) sol= desolve_odeint([Hprime, Gprime], ics=[1, 1], dvars= [H, G], times=t) p=list_plot(list(zip(t, sol[:, 0])), plotjoined=True, axes_labels=["Time", "Hormone Secretion"]) + list_plot(list(zip(t, sol[:, 1])), plotjoined=True, color= "red") show (p)
Out[19]:
Interactive function <function system at 0x7f002ed14820> with 1 widget
n: IntSlider(value=5, description='n'…
In [0]: