Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
| Download
Project: Math 367-17S
Views: 241306
2027
False
(168, 31)
168
[2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, 2801]
True
10
(10, 7, -1)
6
4
5
3
4
515377520732011331036461129765621272702107522001
5
4
Error in lines 1-1
Traceback (most recent call last):
File "/projects/sage/sage-7.5/local/lib/python2.7/site-packages/smc_sagews/sage_server.py", line 982, in execute
exec compile(block+'\n', '', 'single') in namespace, locals
File "", line 1, in <module>
File "sage/rings/integer.pyx", line 1858, in sage.rings.integer.Integer.__div__ (/projects/sage/sage-7.5/src/build/cythonized/sage/rings/integer.c:13046)
return coercion_model.bin_op(left, right, operator.div)
File "sage/structure/coerce.pyx", line 1055, in sage.structure.coerce.CoercionModel_cache_maps.bin_op (/projects/sage/sage-7.5/src/build/cythonized/sage/structure/coerce.c:9336)
return PyObject_CallObject(op, xy)
File "sage/structure/element.pyx", line 1638, in sage.structure.element.Element.__div__ (/projects/sage/sage-7.5/src/build/cythonized/sage/structure/element.c:12978)
return (<Element>left)._div_(right)
File "sage/rings/finite_rings/integer_mod.pyx", line 2430, in sage.rings.finite_rings.integer_mod.IntegerMod_int._div_ (/projects/sage/sage-7.5/src/build/cythonized/sage/rings/finite_rings/integer_mod.c:28670)
raise ZeroDivisionError("Inverse does not exist.")
ZeroDivisionError: Inverse does not exist.
1
2^2 * 7 * 23
259
128
1
336
1
2^4 * 3 * 7
(1, -3, 6397)
83161
1
-83160
277200
1
10
False
3 * 73
2
2312
888 2^3 * 3 * 37
889 7 * 127
890 2 * 5 * 89
891 3^4 * 11
892 2^2 * 223
893 19 * 47
894 2 * 3 * 149
895 5 * 179
896 2^7 * 7
897 3 * 13 * 23
898 2 * 449
899 29 * 31
900 2^2 * 3^2 * 5^2
901 17 * 53
902 2 * 11 * 41
903 3 * 7 * 43
904 2^3 * 113
905 5 * 181
906 2 * 3 * 151
907 907
9552
419
x |--> 262143/262144*x^18 + 131071/131072*x^17 + 65535/65536*x^16 + 32767/32768*x^15 + 16383/16384*x^14 + 8191/8192*x^13 + 4095/4096*x^12 + 2047/2048*x^11 + 1023/1024*x^10 + 511/512*x^9 + 255/256*x^8 + 127/128*x^7 + 63/64*x^6 + 31/32*x^5 + 15/16*x^4 + 7/8*x^3 + 3/4*x^2 + 1/2*x
89.00000000000004
[x == -1/2*(1/9*sqrt(11)*sqrt(3) + 17/27)^(1/3)*(I*sqrt(3) + 1) + 1/9*(-I*sqrt(3) + 1)/(1/9*sqrt(11)*sqrt(3) + 17/27)^(1/3) - 1/3, x == -1/2*(1/9*sqrt(11)*sqrt(3) + 17/27)^(1/3)*(-I*sqrt(3) + 1) - 1/9*(-I*sqrt(3) - 1)/(1/9*sqrt(11)*sqrt(3) + 17/27)^(1/3) - 1/3, x == (1/9*sqrt(11)*sqrt(3) + 17/27)^(1/3) - 2/9/(1/9*sqrt(11)*sqrt(3) + 17/27)^(1/3) - 1/3]
73
24