Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
151 views
ubuntu2404
\relax 
\providecommand \babel@aux [2]{\global \let \babel@toc \@gobbletwo }
\@nameuse{bbl@beforestart}
\bibstyle{biblatex}
\bibdata{main-blx,references}
\citation{biblatex-control}
\abx@aux@refcontext{none/global//global/global/global}
\providecommand\hyper@newdestlabel[2]{}
\providecommand\HyField@AuxAddToFields[1]{}
\providecommand\HyField@AuxAddToCoFields[2]{}
\citation{he2016deep}
\abx@aux@cite{0}{he2016deep}
\abx@aux@segm{0}{0}{he2016deep}
\citation{simonyan2014very}
\abx@aux@cite{0}{simonyan2014very}
\abx@aux@segm{0}{0}{simonyan2014very}
\babel@aux{english}{}
\@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{1}{section.1}\protected@file@percent }
\newlabel{sec:introduction}{{1}{1}{Introduction}{section.1}{}}
\newlabel{sec:introduction@cref}{{[section][1][]1}{[1][1][]1}{}{}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2}Methodology and Model Architecture}{2}{section.2}\protected@file@percent }
\newlabel{sec:methodology}{{2}{2}{Methodology and Model Architecture}{section.2}{}}
\newlabel{sec:methodology@cref}{{[section][2][]2}{[1][2][]2}{}{}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Dataset Generation and Preprocessing}{2}{subsection.2.1}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Model Architecture Design}{2}{subsection.2.2}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Learning Curve Analysis}{2}{subsection.2.3}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {3}Results and Performance Analysis}{2}{section.3}\protected@file@percent }
\newlabel{sec:results}{{3}{2}{Results and Performance Analysis}{section.3}{}}
\newlabel{sec:results@cref}{{[section][3][]3}{[1][2][]2}{}{}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Model Comparison and Metrics}{2}{subsection.3.1}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Comprehensive model performance analysis. (Top left) Accuracy comparison across training, validation, and test sets for all models. (Top right) Cross-validation performance with standard deviation error bars. (Bottom left) Learning curves for the Multi-Layer Perceptron showing training and validation accuracy vs dataset size. (Bottom right) Confusion matrix for the best performing model showing classification performance per class.}}{3}{figure.caption.1}\protected@file@percent }
\providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
\newlabel{fig:model_comparison}{{1}{3}{Comprehensive model performance analysis. (Top left) Accuracy comparison across training, validation, and test sets for all models. (Top right) Cross-validation performance with standard deviation error bars. (Bottom left) Learning curves for the Multi-Layer Perceptron showing training and validation accuracy vs dataset size. (Bottom right) Confusion matrix for the best performing model showing classification performance per class}{figure.caption.1}{}}
\newlabel{fig:model_comparison@cref}{{[figure][1][]1}{[1][2][]3}{}{}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Hyperparameter Optimization Analysis}{3}{subsection.3.2}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Advanced Analysis and Visualization}{4}{subsection.3.3}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Advanced model analysis and insights. (Top left) Feature importance ranking from Random Forest showing the most predictive features. (Top right) Prediction confidence distribution for the MLP model, indicating model certainty. (Bottom left) Performance versus model complexity relationship, showing the bias-variance tradeoff. (Bottom right) Overfitting analysis comparing training and validation accuracies, with the diagonal line representing perfect generalization.}}{4}{figure.caption.2}\protected@file@percent }
\newlabel{fig:advanced_analysis}{{2}{4}{Advanced model analysis and insights. (Top left) Feature importance ranking from Random Forest showing the most predictive features. (Top right) Prediction confidence distribution for the MLP model, indicating model certainty. (Bottom left) Performance versus model complexity relationship, showing the bias-variance tradeoff. (Bottom right) Overfitting analysis comparing training and validation accuracies, with the diagonal line representing perfect generalization}{figure.caption.2}{}}
\newlabel{fig:advanced_analysis@cref}{{[figure][2][]2}{[1][4][]4}{}{}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4}Discussion and Implications}{4}{section.4}\protected@file@percent }
\newlabel{sec:discussion}{{4}{4}{Discussion and Implications}{section.4}{}}
\newlabel{sec:discussion@cref}{{[section][4][]4}{[1][4][]4}{}{}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Model Performance and Architecture Insights}{4}{subsection.4.1}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2}CoCalc Integration Benefits}{5}{subsection.4.2}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Future Directions and Extensions}{5}{subsection.4.3}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {5}Conclusions}{5}{section.5}\protected@file@percent }
\newlabel{sec:conclusions}{{5}{5}{Conclusions}{section.5}{}}
\newlabel{sec:conclusions@cref}{{[section][5][]5}{[1][5][]5}{}{}{}}
\abx@aux@read@bbl@mdfivesum{A2BD9824A79CC004257302009AC80892}
\abx@aux@defaultrefcontext{0}{he2016deep}{none/global//global/global/global}
\abx@aux@defaultrefcontext{0}{simonyan2014very}{none/global//global/global/global}
\abx@aux@defaultlabelprefix{0}{he2016deep}{}
\abx@aux@defaultlabelprefix{0}{simonyan2014very}{}
\gdef \@abspage@last{6}