Published/scientific-latex-templates/machine-learning / pythontex-files-main / py_default_default_5.stdout
164 viewsubuntu2404
Hyperparameter optimization for MLP: Best cross-validation score: 0.7160 Best parameters: {\small \begin{verbatim} {'alpha': 0.01, 'hidden_layer_sizes': (128, 64, 32), 'learning_rate_init': 0.01} \end{verbatim} } Top 5 parameter combinations: {\small \begin{verbatim} alpha=0.01, layers=(128, 64, 32), lr=0.01 : 0.7160 $\pm$ 0.0152 \end{verbatim} } {\small \begin{verbatim} alpha=0.0001, layers=(64,), lr=0.01 : 0.7140 $\pm$ 0.0160 \end{verbatim} } {\small \begin{verbatim} alpha=0.001, layers=(64,), lr=0.01 : 0.7140 $\pm$ 0.0160 \end{verbatim} } {\small \begin{verbatim} alpha=0.01, layers=(64,), lr=0.01 : 0.7140 $\pm$ 0.0160 \end{verbatim} } {\small \begin{verbatim} alpha=0.0001, layers=(128, 64, 32), lr=0.001 : 0.7081 $\pm$ 0.0361 \end{verbatim} } Random Forest feature importance analysis: Top feature importance: 0.0308 Mean feature importance: 0.0156 Features with zero importance: 0