Typed up notes from 9/11
\documentclass[12pt,letterpaper,final]{report}1\usepackage{amsmath}2\usepackage{amsfonts}3\usepackage{amssymb}4\usepackage{amsthm}5\usepackage[linewidth=1pt]{mdframed}6\usepackage{fullpage}789\begin{document}1011\begin{mdframed}1213\center{\Large{\textbf{MATH 314 Fall 2019 - Class Notes}}}14\center{9/11/2019} %Put the date of the class here!15\center{Scribe: Christine Adams} %Put Your Name Here!1617\end{mdframed}1819\textbf{\underline{Summary:}} Today's class covered the Hill cipher20\\2122\textbf{Hill Cipher}\\23\textbf{m-block size}\\24\textbf{k-$m \times m$} matrix $mod{26}$}\\25\textbf{(k has to have an inverse)}\\26E($\dot{\vec{v}}$)=$\dot{\vec{v}}$k \\27D($\dot{\vec{c}}$)=$\dot{\vec{c}}$k \\28\textbf{Inverse of a $2 \times 2 \matrix} \29(mod{26}) \\3031if k=$ \begin{smallmatrix}a&b\\c&d\end{smallmatrix}$ ($mod{26}$)\\323334\textbf{Then k^{-1}$=(adbc)^{-1} $\begin{smallmatrix}d&-b\\c&a\end{smallmatrix}$ ($mod{26}$)}\\3536\textbf{Determinant has to be a mod 26 value that is odd and not 13}\\37\\38\textbf{Gcd (det(k), 26)=1, 1 being the greatest factor they have in common.}\\39\textbf{This is true for any hill cipher matrix k.}\\40Find the inverse of41$$\[42K=43\left[ {\begin{array}{cc}444 & 1 \\453 & 10 \\46\end{array} } \right]47\]$$48\textbf{det(k)=$4\times 10$ -$1\times 3$=37=11 mod {26}}4950K^{-1}=(11)^{-1}=$\begin{smallmatrix}10&-1\\-3&4\end{smallmatrix}$\\5152$$\[19\times53\left[ {\begin{array}{cc}5410 & 25 \\5523 & 4 \\56\end{array} } \right] mod{26}57\]$$58$$\[\equiv59\left[ {\begin{array}{cc}6019\times 10 & 19 \times 25 \\6119\times 23 & 19\times 4 \\62\end{array} } \right] mod{26}63\]$$64=$$\[\equiv65\left[ {\begin{array}{cc}668 & 7 \\6721 & 24 \\68\end{array} } \right] \in \textbf{Inverse}69\]$$70717273\textbf{\underline{Chosen Plaintext attack}}\\74\textbf{Suppose m=2}\\75\textbf{Pick the plaintext} \enquote{"ba"}\textbf{$<$1,0$>$} \\76\textbf{E($<1$,0$>$=$<$1,0$>$}77$\begin{smallmatrix}a&b\\c&d\end{smallmatrix}$ = $<$a,b$>$ or $<$1,0$>$ ( Find the first row of k)}78\\79\\80Encrypt \enquote{"a,b"}- E($<$0,1$>$)=$<$0,1$>$ $\begin{smallmatrix}a&b\\c&d\end{smallmatrix}$81\\Known plaintext attack\\82Find the key using linear algebra\\83Alice sends the ciphertext LIPVPI to Bob \\8411,19,15,21,15,8 \\85Eve learns this corresponds to \enquote{"linear"} \\8611,19,15,21,15,8 \\87Block size m=2\\88$<$11,8$>$ k =$<$11,19$>$\\89$<$13,4$>$k=$<$15,21$>$\\90$<$0,17$>$k=$<$15,8$>$ $mod{26}$ \\91\textbf{Matrix equation}92$$\[ \left[ {\begin{array}{cc}9311 & 8 \\9413 & 4 \\95\end{array} } \right] k=96\left[{\begin{array}{cc}9711 & 19 \\9815 & 21 \\99\end{array} } \right100]$$ \\101Invert the first matrix (find the inverse to get k by itself)102103$$\[104\left[ {\begin{array}{cc}10511 & 8 \\10613 & 4 \\107\end{array}} \right]^{-1}108= (44-104)^{-1}109\left[{\begin{array}{cc}1104 & -8 \\111-13 & 11 \\112\end{array} } \right]113\]$$114\textbf{(Even so not invertible)}\\115116\textbf{Try again!\\}117\textbf{1st and 3rd equation\\}118$$\[119\left[ {\begin{array}{cc}12011 & 8 \\1210 & 17 \\122\end{array} } \right]123k \equiv \left[ {\begin{array}{cc}12411 & 18\\12515 & 8 \\126\end{array} } \right]127\]$$128\textbf{Invert this}129$$\[130\left[ {\begin{array}{cc}13111 & 8 \\1320 & 17 \\133\end{array} } \right]^{-1}\equiv (11*17-8(0))^{-1}134\left[ {\begin{array}{cc}13517 & -8\\1360 & 11 \\137\end{array} } \right]138\equiv 5^{-1} \left[ {\begin{array}{cc}13917 & -8\\1400 & 11 \\141\end{array} } \right]142\]$$143$$\[144\equiv 21 \times145\left[ {\begin{array}{cc}14617 & 18\\1470 & 11 \\148\end{array} } \right]149\equiv150\left[ {\begin{array}{cc}15119 & 14\\1520 & 23 \\153\end{array} } \right]154\]$$155\textbf{Multiply both sides of equations on left!}156$$\[157\left[ {\begin{array}{cc}15819 & 14\\1590 & 23 \\160\end{array} } \right]161\left[ {\begin{array}{cc}16211 & 8\\1630 & 17 \\164\end{array} } \right] k\equiv165\left[ {\begin{array}{cc}16619 & 14\\1670 & 23 \\168\end{array} } \right]169\left[ {\begin{array}{cc}17011 & 19\\17115 & 8 \\172\end{array} } \right]173\]$$174Identity \\175\\176$$\[K\equiv177\left[ {\begin{array}{cc}17819 & 14\\1790 & 17 \\180\end{array} } \right]181\left[ {\begin{array}{cc}18211 & 19\\18315 & 8 \\184\end{array} } \right]185\]$$186$$\[\equiv187\left[ {\begin{array}{cc}18819(11)+14(15) & 19(19)+14(8)\\18923(15) & 23(8) \\190\end{array} } \right]191\]$$192$$\[193\equiv194\left[ {\begin{array}{cc}1951+2 & 23+8\\1967 & 2 \\197\end{array} } \right]198\]$$199200$$\[201\equiv202\left[ {\begin{array}{cc}2033 & 5\\2047 & 2 \\205\end{array} } \right]=k206\]$$207208\textbf{Key matrix has to be invertible }209210211212213214215216217218219220221\end{document}\documentclass[12pt,letterpaper,final]{report}222\usepackage{amsmath}223\usepackage{amsfonts}224\usepackage{amssymb}225\usepackage{amsthm}226\usepackage[linewidth=1pt]{mdframed}227\usepackage{fullpage}228229230\begin{document}231232\begin{mdframed}233234\center{\Large{\textbf{MATH 314 Spring 2018 - Class Notes}}}235\center{10/14/2015} %Put the date of the class here!236\center{Scribe: Name} %Put Your Name Here!237238\end{mdframed}239240\textbf{\underline{Summary:}} Insert a short summary of what today's class covered.241\\242243\textbf{\underline{Notes:}} Include detailed notes from the lecture or class activities. Format your notes nicely using latex such as244245\begin{itemize}246\item bullets247\item or248\end{itemize}249250\begin{enumerate}251\item lists252\item of253\item things254\end{enumerate}255256or \textbf{other} \underline{formatting} \textit{commands.} Make sure to write $e^{qu}a+i \circ \mathbb{N} s$ in math mode.257\\258259\textbf{\underline{Examples:}} If including plaintext or ciphertext or other data it is often helpful to write them using \texttt{typewriter text}.260261\end{document}262263