Contact Us!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

| Download
Project: CC9.6
Views: 13
def cal(): C = 100 R = 50 a = 5 b = 10 T = var('T') g(T) = (C - R * (b - T)/(b - a) * e ^ (-2 * T / (a + b))) / (T - (T - a)^2 / (2 * (b - a))) gprime = derivative(g,T) P = plot(g,(T,0,50),color="blue") Q = plot(gprime,(T,0,50),color="red") i = 0 mins = 1000000000000000000 mini = -1 while i <= 10000: point = g(i).n(30) if point < mins: mins = point mini = i i += 1 i_left = mini - 1 i_right = mini + 1 i = i_left # show(i_left,i_right) mins = 1000000000000000000 mini = -1 while i <= i_right: point = g(i).n(30) if point < mins: mins = point mini = i i += 0.00001 show("min_g = ", mins) show("min_T = ", mini) show(g) show(P) show(gprime) show(Q) cal()
min_g = 1.0380293×107\displaystyle -1.0380293 \times 10^{7}
min_T = 18.6602599999750\displaystyle 18.6602599999750
T  100((T10)e(215T)+10)(T5)210T\displaystyle T \ {\mapsto}\ -\frac{100 \, {\left({\left(T - 10\right)} e^{\left(-\frac{2}{15} \, T\right)} + 10\right)}}{{\left(T - 5\right)}^{2} - 10 \, T}
T  20(2(T10)e(215T)15e(215T))3((T5)210T)+200((T10)e(215T)+10)(T10)((T5)210T)2\displaystyle T \ {\mapsto}\ \frac{20 \, {\left(2 \, {\left(T - 10\right)} e^{\left(-\frac{2}{15} \, T\right)} - 15 \, e^{\left(-\frac{2}{15} \, T\right)}\right)}}{3 \, {\left({\left(T - 5\right)}^{2} - 10 \, T\right)}} + \frac{200 \, {\left({\left(T - 10\right)} e^{\left(-\frac{2}{15} \, T\right)} + 10\right)} {\left(T - 10\right)}}{{\left({\left(T - 5\right)}^{2} - 10 \, T\right)}^{2}}