Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
21 views
Kernel: SageMath 7.6

Un premier contact avec SageMath

On essaye les maths avec π\pi, ...

i*i
-1

e^(i*pi)

e^(i*pi)
-1
preparse("e^(i*pi)")
'e**(i*pi)'
%display latex
e^(i*pi)
n(pi)
n(e)
numerical_approx?
print(n(pi, digits=1000))
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567351885752724891227938183011949129833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132000568127145263560827785771342757789609173637178721468440901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960518707211349999998372978049951059731732816096318595024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303598253490428755468731159562863882353787593751957781857780532171226806613001927876611195909216420199
a=e^(pi*sqrt(163)) a n(a, digits=50)
f(x)=sin(x^2) f
f(2)
n(f(2))
g=diff(f(x), x)
u=var('u')
g(u)
/projects/sage/sage-7.6/local/lib/python2.7/site-packages/IPython/core/interactiveshell.py:2881: DeprecationWarning: Substitution using function-call syntax and unnamed arguments is deprecated and will be removed from a future release of Sage; you can use named arguments instead, like EXPR(x=..., y=...) See http://trac.sagemath.org/5930 for details. exec(code_obj, self.user_global_ns, self.user_ns)
diff(f(x), x, 4)
n(integrate(f(x), (x, 0, sqrt(pi))), digits=100)

plot(f(x))

g1=plot(f(x), (x, 0, 4), color='red', thickness=1, axes_labels=[r"$x$", r"$y$"])
g2=plot(f(x)^2, (x, 0, 4), color='blue', thickness=1, axes_labels=[r"$x$", r"$y$"])
g1+g2
Image in a Jupyter notebook
show(g1+g2, gridlines=True, aspect_ratio=1, title='A beatiful graphic')
Image in a Jupyter notebook
(g1+g2).save("plot_first_graphic.pdf")
g=Graphics() for i in range(10): g+=plot(chebyshev_T(i,x), (x,-1,1), color=hue(i/10), legend_label=r"$T_{}(x)$".format(i)) show(g, axes_labels=[r"$x$", r"$y$"], legend_loc='upper right')
Image in a Jupyter notebook
restore('i')
def f1(x): if x<2: return sin(x) return cos(x)
f1(3)
f1(1)
plot(f1, (0,4))
Image in a Jupyter notebook
trace("f1(x)")
fi=open("data.d", 'r') fi.readline() data=[] for line in fi: xs, ys = line.split(' ') data.append((float(xs), float(ys))) list fi.close() data
list_plot(data)
Image in a Jupyter notebook