Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
287 views
ubuntu2404
\relax 
\providecommand\hyper@newdestlabel[2]{}
\providecommand\HyField@AuxAddToFields[1]{}
\providecommand\HyField@AuxAddToCoFields[2]{}
\@writefile{toc}{\contentsline {section}{\numberline {1}Introduction to Computational Physics in LaTeX}{3}{section.1}\protected@file@percent }
\newlabel{sec:introduction}{{1}{3}{Introduction to Computational Physics in LaTeX}{section.1}{}}
\newlabel{sec:introduction@cref}{{[section][1][]1}{[1][3][]3}{}{}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2}Quantum Mechanics Simulations}{3}{section.2}\protected@file@percent }
\newlabel{sec:quantum-mechanics}{{2}{3}{Quantum Mechanics Simulations}{section.2}{}}
\newlabel{sec:quantum-mechanics@cref}{{[section][2][]2}{[1][3][]3}{}{}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Time-Dependent Schrödinger Equation Solver}{3}{subsection.2.1}\protected@file@percent }
\newlabel{subsec:schrodinger-solver}{{2.1}{3}{Time-Dependent Schrödinger Equation Solver}{subsection.2.1}{}}
\newlabel{subsec:schrodinger-solver@cref}{{[subsection][1][2]2.1}{[1][3][]3}{}{}{}}
\newlabel{eq:schrodinger}{{1}{3}{Time-Dependent Schrödinger Equation Solver}{equation.1}{}}
\newlabel{eq:schrodinger@cref}{{[equation][1][]1}{[1][3][]3}{}{}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Time-dependent Schrödinger equation solution showing quantum tunneling through a potential barrier. The wavefunction evolves from an initial Gaussian wave packet, demonstrating the quantum mechanical phenomenon of barrier penetration that is impossible in classical mechanics.}}{4}{figure.caption.2}\protected@file@percent }
\providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
\newlabel{fig:quantum-tunneling}{{1}{4}{Time-dependent Schrödinger equation solution showing quantum tunneling through a potential barrier. The wavefunction evolves from an initial Gaussian wave packet, demonstrating the quantum mechanical phenomenon of barrier penetration that is impossible in classical mechanics}{figure.caption.2}{}}
\newlabel{fig:quantum-tunneling@cref}{{[figure][1][]1}{[1][3][]4}{}{}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Quantum Harmonic Oscillator Eigenstates}{4}{subsection.2.2}\protected@file@percent }
\newlabel{subsec:harmonic-oscillator}{{2.2}{4}{Quantum Harmonic Oscillator Eigenstates}{subsection.2.2}{}}
\newlabel{subsec:harmonic-oscillator@cref}{{[subsection][2][2]2.2}{[1][4][]4}{}{}{}}
\newlabel{eq:harmonic-hamiltonian}{{2}{4}{Quantum Harmonic Oscillator Eigenstates}{equation.2}{}}
\newlabel{eq:harmonic-hamiltonian@cref}{{[equation][2][]2}{[1][4][]4}{}{}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Quantum harmonic oscillator energy eigenstates showing the characteristic equally-spaced energy levels $E_n = \hbar \omega (n + 1/2)$ and the corresponding wavefunctions. This system serves as a foundation for understanding molecular vibrations, phonons in solids, and quantum field theory.}}{5}{figure.caption.3}\protected@file@percent }
\newlabel{fig:harmonic-oscillator}{{2}{5}{Quantum harmonic oscillator energy eigenstates showing the characteristic equally-spaced energy levels $E_n = \hbar \omega (n + 1/2)$ and the corresponding wavefunctions. This system serves as a foundation for understanding molecular vibrations, phonons in solids, and quantum field theory}{figure.caption.3}{}}
\newlabel{fig:harmonic-oscillator@cref}{{[figure][2][]2}{[1][4][]5}{}{}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Particle in a Box: Quantum Confinement Effects}{5}{subsection.2.3}\protected@file@percent }
\newlabel{subsec:particle-in-box}{{2.3}{5}{Particle in a Box: Quantum Confinement Effects}{subsection.2.3}{}}
\newlabel{subsec:particle-in-box@cref}{{[subsection][3][2]2.3}{[1][5][]5}{}{}{}}
\newlabel{eq:particle-in-box}{{3}{5}{Particle in a Box: Quantum Confinement Effects}{equation.3}{}}
\newlabel{eq:particle-in-box@cref}{{[equation][3][]3}{[1][5][]5}{}{}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Particle in an infinite square well showing (left) the quantized energy levels $E_n \propto n^2$ and corresponding wavefunctions, and (right) a quantum superposition state demonstrating interference patterns in the probability density. This model is fundamental for understanding quantum dots, molecular orbitals, and electronic band structure.}}{6}{figure.caption.4}\protected@file@percent }
\newlabel{fig:particle-in-box}{{3}{6}{Particle in an infinite square well showing (left) the quantized energy levels $E_n \propto n^2$ and corresponding wavefunctions, and (right) a quantum superposition state demonstrating interference patterns in the probability density. This model is fundamental for understanding quantum dots, molecular orbitals, and electronic band structure}{figure.caption.4}{}}
\newlabel{fig:particle-in-box@cref}{{[figure][3][]3}{[1][5][]6}{}{}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3}Statistical Mechanics and Monte Carlo Simulations}{6}{section.3}\protected@file@percent }
\newlabel{sec:statistical-mechanics}{{3}{6}{Statistical Mechanics and Monte Carlo Simulations}{section.3}{}}
\newlabel{sec:statistical-mechanics@cref}{{[section][3][]3}{[1][6][]6}{}{}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Ising Model Monte Carlo Simulation}{6}{subsection.3.1}\protected@file@percent }
\newlabel{subsec:ising-model}{{3.1}{6}{Ising Model Monte Carlo Simulation}{subsection.3.1}{}}
\newlabel{subsec:ising-model@cref}{{[subsection][1][3]3.1}{[1][6][]6}{}{}{}}
\newlabel{eq:ising-hamiltonian}{{4}{6}{Ising Model Monte Carlo Simulation}{equation.4}{}}
\newlabel{eq:ising-hamiltonian@cref}{{[equation][4][]4}{[1][6][]6}{}{}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces 2D Ising model Monte Carlo simulation showing the magnetic phase transition. (Top left) Magnetization decreases at the critical temperature $T_c \approx 2.269$. (Top right) Susceptibility diverges at $T_c$. (Bottom left) Internal energy shows characteristic behavior. (Bottom right) Typical spin configuration above $T_c$ showing disordered paramagnetic phase.}}{7}{figure.caption.5}\protected@file@percent }
\newlabel{fig:ising-model}{{4}{7}{2D Ising model Monte Carlo simulation showing the magnetic phase transition. (Top left) Magnetization decreases at the critical temperature $T_c \approx 2.269$. (Top right) Susceptibility diverges at $T_c$. (Bottom left) Internal energy shows characteristic behavior. (Bottom right) Typical spin configuration above $T_c$ showing disordered paramagnetic phase}{figure.caption.5}{}}
\newlabel{fig:ising-model@cref}{{[figure][4][]4}{[1][6][]7}{}{}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Partition Function and Thermodynamic Properties}{7}{subsection.3.2}\protected@file@percent }
\newlabel{subsec:partition-function}{{3.2}{7}{Partition Function and Thermodynamic Properties}{subsection.3.2}{}}
\newlabel{subsec:partition-function@cref}{{[subsection][2][3]3.2}{[1][7][]7}{}{}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Exact thermodynamic properties of the 1D Ising model. (Left) Free energy per site decreases with temperature, reflecting increased entropy at higher temperatures. (Right) Partition function grows exponentially with temperature, quantifying the total statistical weight of all accessible microstates.}}{8}{figure.caption.6}\protected@file@percent }
\newlabel{fig:thermodynamics}{{5}{8}{Exact thermodynamic properties of the 1D Ising model. (Left) Free energy per site decreases with temperature, reflecting increased entropy at higher temperatures. (Right) Partition function grows exponentially with temperature, quantifying the total statistical weight of all accessible microstates}{figure.caption.6}{}}
\newlabel{fig:thermodynamics@cref}{{[figure][5][]5}{[1][7][]8}{}{}{}}
\@writefile{toc}{\contentsline {section}{\numberline {4}Condensed Matter Physics Applications}{8}{section.4}\protected@file@percent }
\newlabel{sec:condensed-matter}{{4}{8}{Condensed Matter Physics Applications}{section.4}{}}
\newlabel{sec:condensed-matter@cref}{{[section][4][]4}{[1][8][]8}{}{}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Electronic Band Structure Calculations}{8}{subsection.4.1}\protected@file@percent }
\newlabel{subsec:band-structure}{{4.1}{8}{Electronic Band Structure Calculations}{subsection.4.1}{}}
\newlabel{subsec:band-structure@cref}{{[subsection][1][4]4.1}{[1][8][]8}{}{}{}}
\newlabel{eq:tight-binding}{{5}{8}{Electronic Band Structure Calculations}{equation.5}{}}
\newlabel{eq:tight-binding@cref}{{[equation][5][]5}{[1][8][]8}{}{}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Electronic band structure calculations using tight-binding models. (Top) Energy dispersion relations for square lattice and graphene valence band. (Bottom) Corresponding density of states showing the characteristic features: van Hove singularities in the square lattice and linear dispersion near the Dirac point in graphene.}}{9}{figure.caption.7}\protected@file@percent }
\newlabel{fig:band-structure}{{6}{9}{Electronic band structure calculations using tight-binding models. (Top) Energy dispersion relations for square lattice and graphene valence band. (Bottom) Corresponding density of states showing the characteristic features: van Hove singularities in the square lattice and linear dispersion near the Dirac point in graphene}{figure.caption.7}{}}
\newlabel{fig:band-structure@cref}{{[figure][6][]6}{[1][8][]9}{}{}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Fermi Surface and Electronic Properties}{9}{subsection.4.2}\protected@file@percent }
\newlabel{subsec:fermi-surface}{{4.2}{9}{Fermi Surface and Electronic Properties}{subsection.4.2}{}}
\newlabel{subsec:fermi-surface@cref}{{[subsection][2][4]4.2}{[1][9][]9}{}{}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Fermi surfaces (red contours) and electron occupation (blue shading) for a 2D square lattice at different filling levels. The Fermi surface evolves from small pockets at low filling to large connected surfaces at high filling, determining the metallic properties and electronic transport behavior.}}{10}{figure.caption.8}\protected@file@percent }
\newlabel{fig:fermi-surface}{{7}{10}{Fermi surfaces (red contours) and electron occupation (blue shading) for a 2D square lattice at different filling levels. The Fermi surface evolves from small pockets at low filling to large connected surfaces at high filling, determining the metallic properties and electronic transport behavior}{figure.caption.8}{}}
\newlabel{fig:fermi-surface@cref}{{[figure][7][]7}{[1][9][]10}{}{}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Phonon Dispersion Relations}{10}{subsection.4.3}\protected@file@percent }
\newlabel{subsec:phonon-dispersion}{{4.3}{10}{Phonon Dispersion Relations}{subsection.4.3}{}}
\newlabel{subsec:phonon-dispersion@cref}{{[subsection][3][4]4.3}{[1][10][]10}{}{}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Phonon dispersion relations for 1D lattices. (Left) Dispersion curves showing the characteristic sinusoidal form for monoatomic chains and the acoustic/optical branches for diatomic chains with a frequency gap. (Right) Corresponding phonon density of states determining thermal properties like specific heat and thermal conductivity.}}{11}{figure.caption.9}\protected@file@percent }
\newlabel{fig:phonon-dispersion}{{8}{11}{Phonon dispersion relations for 1D lattices. (Left) Dispersion curves showing the characteristic sinusoidal form for monoatomic chains and the acoustic/optical branches for diatomic chains with a frequency gap. (Right) Corresponding phonon density of states determining thermal properties like specific heat and thermal conductivity}{figure.caption.9}{}}
\newlabel{fig:phonon-dispersion@cref}{{[figure][8][]8}{[1][10][]11}{}{}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5}Advanced Topics and Applications}{11}{section.5}\protected@file@percent }
\newlabel{sec:advanced-topics}{{5}{11}{Advanced Topics and Applications}{section.5}{}}
\newlabel{sec:advanced-topics@cref}{{[section][5][]5}{[1][11][]11}{}{}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Quantum Many-Body Systems}{11}{subsection.5.1}\protected@file@percent }
\newlabel{subsec:many-body}{{5.1}{11}{Quantum Many-Body Systems}{subsection.5.1}{}}
\newlabel{subsec:many-body@cref}{{[subsection][1][5]5.1}{[1][11][]11}{}{}{}}
\newlabel{eq:hubbard-model}{{6}{11}{Quantum Many-Body Systems}{equation.6}{}}
\newlabel{eq:hubbard-model@cref}{{[equation][6][]6}{[1][11][]11}{}{}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces Mean-field solution of the 2D Hubbard model showing the emergence of magnetic order. (Top left) Magnetization increases with interaction strength U, indicating magnetic instability. (Top right) Chemical potential evolution with correlations. (Bottom) Spin-resolved momentum distributions showing different occupations for spin-up and spin-down electrons in the magnetic state.}}{12}{figure.caption.10}\protected@file@percent }
\newlabel{fig:hubbard-model}{{9}{12}{Mean-field solution of the 2D Hubbard model showing the emergence of magnetic order. (Top left) Magnetization increases with interaction strength U, indicating magnetic instability. (Top right) Chemical potential evolution with correlations. (Bottom) Spin-resolved momentum distributions showing different occupations for spin-up and spin-down electrons in the magnetic state}{figure.caption.10}{}}
\newlabel{fig:hubbard-model@cref}{{[figure][9][]9}{[1][11][]12}{}{}{}}
\@writefile{toc}{\contentsline {section}{\numberline {6}Computational Techniques and Best Practices}{13}{section.6}\protected@file@percent }
\newlabel{sec:computational-techniques}{{6}{13}{Computational Techniques and Best Practices}{section.6}{}}
\newlabel{sec:computational-techniques@cref}{{[section][6][]6}{[1][12][]13}{}{}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.1}Numerical Precision and Error Analysis}{13}{subsection.6.1}\protected@file@percent }
\newlabel{subsec:error-analysis}{{6.1}{13}{Numerical Precision and Error Analysis}{subsection.6.1}{}}
\newlabel{subsec:error-analysis@cref}{{[subsection][1][6]6.1}{[1][12][]13}{}{}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces Convergence analysis for numerical integration methods showing the expected scaling behavior. The trapezoidal rule exhibits $O(N^{-2})$ convergence while Simpson's rule achieves $O(N^{-4})$ convergence for smooth functions. This analysis is crucial for choosing appropriate grid sizes in computational physics simulations.}}{13}{figure.caption.11}\protected@file@percent }
\newlabel{fig:convergence-study}{{10}{13}{Convergence analysis for numerical integration methods showing the expected scaling behavior. The trapezoidal rule exhibits $O(N^{-2})$ convergence while Simpson's rule achieves $O(N^{-4})$ convergence for smooth functions. This analysis is crucial for choosing appropriate grid sizes in computational physics simulations}{figure.caption.11}{}}
\newlabel{fig:convergence-study@cref}{{[figure][10][]10}{[1][12][]13}{}{}{}}
\@writefile{toc}{\contentsline {section}{\numberline {7}Conclusion and Future Directions}{13}{section.7}\protected@file@percent }
\newlabel{sec:conclusion}{{7}{13}{Conclusion and Future Directions}{section.7}{}}
\newlabel{sec:conclusion@cref}{{[section][7][]7}{[1][13][]13}{}{}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {7.1}Computational Resources and Performance}{14}{subsection.7.1}\protected@file@percent }
\newlabel{subsec:performance}{{7.1}{14}{Computational Resources and Performance}{subsection.7.1}{}}
\newlabel{subsec:performance@cref}{{[subsection][1][7]7.1}{[1][14][]14}{}{}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {7.2}Extensions and Applications}{14}{subsection.7.2}\protected@file@percent }
\newlabel{subsec:extensions}{{7.2}{14}{Extensions and Applications}{subsection.7.2}{}}
\newlabel{subsec:extensions@cref}{{[subsection][2][7]7.2}{[1][14][]14}{}{}{}}
\@writefile{toc}{\contentsline {section}{\numberline {A}Code Repository and Data}{15}{appendix.A}\protected@file@percent }
\newlabel{app:code}{{A}{15}{Code Repository and Data}{appendix.A}{}}
\newlabel{app:code@cref}{{[section][1][]A}{[1][14][]15}{}{}{}}
\@writefile{toc}{\contentsline {section}{\numberline {B}Compilation Instructions}{15}{appendix.B}\protected@file@percent }
\newlabel{app:compilation}{{B}{15}{Compilation Instructions}{appendix.B}{}}
\newlabel{app:compilation@cref}{{[section][2][]B}{[1][15][]15}{}{}{}}
\gdef \@abspage@last{15}