Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Apply computational chemistry methods including DFT calculations and molecular dynamics to predict chemical properties. Build QSAR models for drug discovery, analyze molecular descriptors, and implement machine learning approaches for chemical data. Explore quantum chemistry integration with R programming in CoCalc's collaborative environment.

31 views
ubuntu2404
Kernel: R (system-wide)

Advanced Chemical Bonding with R in CoCalc - Chapter 7

Computational Chemistry and R Integration

This notebook contains Chapter 7 from the main Advanced Chemical Bonding with R in CoCalc notebook.

For the complete course, please refer to the main notebook: Advanced Chemical Bonding with R in CoCalc.ipynb

# Setup: Load essential R packages for chemical analysis # Avoid interactive CRAN prompts options(repos = c(CRAN = "https://cloud.r-project.org")) required_packages <- c("ggplot2", "dplyr", "plotly", "corrplot", "reshape2", "RColorBrewer") # Install missing packages quietly missing <- required_packages[!vapply(required_packages, requireNamespace, logical(1), quietly = TRUE)] if (length(missing)) install.packages(missing, quiet = TRUE) # Attach packages without printing list results or masking chatter suppressPackageStartupMessages({ for (pkg in required_packages) { suppressWarnings(library(pkg, character.only = TRUE, quietly = TRUE, warn.conflicts = FALSE)) } }) # Alternatively: # invisible(lapply(required_packages, function(pkg) # suppressWarnings(library(pkg, character.only = TRUE, quietly = TRUE, warn.conflicts = FALSE)) # )) # Theme fix: use linewidth instead of size to avoid ggplot2 deprecation warning chemistry_theme <- ggplot2::theme_minimal() + ggplot2::theme( plot.title = ggplot2::element_text(size = 16, face = "bold", color = "#2E86AB"), plot.subtitle = ggplot2::element_text(size = 12, color = "#A23B72"), axis.title = ggplot2::element_text(size = 12, face = "bold"), axis.text = ggplot2::element_text(size = 10), legend.title = ggplot2::element_text(size = 11, face = "bold"), panel.grid.minor = ggplot2::element_blank(), panel.border = ggplot2::element_rect(color = "gray80", fill = NA, linewidth = 0.5) ) cat("Chemical Analysis Toolkit Loaded Successfully!\n") cat("Ready to explore the molecular world with R\n")

Chapter 7: Computational Chemistry and R Integration

7.1 Quantum Chemical Calculations

Modern computational chemistry uses quantum mechanics to predict molecular properties:

Density Functional Theory (DFT)

  • Purpose: Calculate electron density distributions

  • Applications: Geometry optimization, bond energies, reaction pathways

  • Popular Functionals: B3LYP, PBE0, M06-2X

Molecular Dynamics (MD)

  • Purpose: Simulate molecular motion over time

  • Applications: Protein folding, drug binding, material properties

  • Time Scales: femtoseconds to microseconds

7.2 R Packages for Chemical Data

  • ChemmineR: Chemical informatics, molecular descriptors

  • rcdk: Chemistry Development Kit interface

  • RxnSim: Reaction similarity and analysis

  • OrgMassSpecR: Mass spectrometry data analysis

7.3 Machine Learning in Chemistry

Predictive Models

  • QSAR: Quantitative Structure-Activity Relationships

  • Property Prediction: Solubility, toxicity, bioactivity

  • Reaction Prediction: Yield, selectivity, conditions

# Molecular descriptor analysis and QSAR modeling # Create synthetic dataset representing typical pharmaceutical compounds set.seed(42) # For reproducibility # Generate molecular descriptors for drug-like compounds n_compounds <- 100 molecular_descriptors <- data.frame( compound_id = paste0("COMP_", sprintf("%03d", 1:n_compounds)), molecular_weight = runif(n_compounds, 150, 800), logP = runif(n_compounds, -2, 6), # Lipophilicity h_bond_donors = rpois(n_compounds, 2), h_bond_acceptors = rpois(n_compounds, 4), rotatable_bonds = rpois(n_compounds, 5), polar_surface_area = runif(n_compounds, 20, 200), aromatic_rings = rpois(n_compounds, 2) ) # Calculate synthetic bioactivity based on realistic relationships molecular_descriptors$bioactivity <- with(molecular_descriptors, { # Lipinski's Rule of Five influences lipinski_penalty <- ifelse(molecular_weight > 500, -0.5, 0) + ifelse(logP > 5, -0.3, 0) + ifelse(h_bond_donors > 5, -0.2, 0) + ifelse(h_bond_acceptors > 10, -0.2, 0) # Optimal activity model base_activity <- 2 + 0.3 * aromatic_rings + 0.1 * h_bond_acceptors - 0.05 * rotatable_bonds + 0.2 * logP - 0.02 * logP^2 + # Optimal logP around 5 lipinski_penalty + rnorm(n_compounds, 0, 0.3) # Random variation pmax(0, base_activity) # Ensure non-negative }) # Create Lipinski's Rule of Five compliance molecular_descriptors$lipinski_compliant <- with(molecular_descriptors, (molecular_weight <= 500) & (logP <= 5) & (h_bond_donors <= 5) & (h_bond_acceptors <= 10) ) # Build predictive QSAR model qsar_model <- lm(bioactivity ~ molecular_weight + logP + I(logP^2) + h_bond_donors + h_bond_acceptors + rotatable_bonds + polar_surface_area + aromatic_rings, data = molecular_descriptors) # Add predictions to dataset molecular_descriptors$predicted_activity <- predict(qsar_model) molecular_descriptors$residuals <- residuals(qsar_model) # Create comprehensive QSAR visualization p_qsar <- ggplot(molecular_descriptors, aes(x = predicted_activity, y = bioactivity)) + geom_point(aes(color = lipinski_compliant, size = molecular_weight), alpha = 0.7) + geom_smooth(method = "lm", se = TRUE, color = "red", alpha = 0.3) + geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "gray50") + scale_color_manual(values = c("FALSE" = "orange", "TRUE" = "green"), name = "Lipinski\nCompliant") + scale_size_continuous(range = c(2, 6), name = "Molecular\nWeight") + labs( title = "QSAR Model: Predicted vs Observed Bioactivity", subtitle = "Machine learning prediction of drug-like properties from molecular descriptors", x = "Predicted Bioactivity", y = "Observed Bioactivity", caption = "Lipinski's Rule of Five compliance affects drug-like properties" ) + chemistry_theme print(p_qsar) # Model performance metrics r_squared <- summary(qsar_model)$r.squared rmse <- sqrt(mean(molecular_descriptors$residuals^2)) mae <- mean(abs(molecular_descriptors$residuals)) cat("\n QSAR Model Performance:\n") cat("==========================\n") cat(sprintf("R² = %.3f\n", r_squared)) cat(sprintf("RMSE = %.3f\n", rmse)) cat(sprintf("MAE = %.3f\n", mae)) # Lipinski compliance analysis lipinski_analysis <- molecular_descriptors %>% group_by(lipinski_compliant) %>% summarise( count = n(), avg_bioactivity = mean(bioactivity), avg_mw = mean(molecular_weight), avg_logP = mean(logP), .groups = 'drop' ) cat("\n Lipinski Rule Analysis:\n") cat("==========================\n") print(lipinski_analysis) cat("\n Key QSAR Insights:\n") cat("• Lipinski-compliant compounds show better drug-like properties\n") cat("• Optimal logP around 2-3 for bioactivity\n") cat("• Molecular weight <500 Da preferred for oral drugs\n") cat("• R integration enables rapid cheminformatics analysis!\n")
`geom_smooth()` using formula = 'y ~ x'
📈 QSAR Model Performance: ========================== R² = 0.719 RMSE = 0.306 MAE = 0.245 💊 Lipinski Rule Analysis: ========================== # A tibble: 2 × 5 lipinski_compliant count avg_bioactivity avg_mw avg_logP <lgl> <int> <dbl> <dbl> <dbl> 1 FALSE 54 2.60 636. 2.47 2 TRUE 46 2.87 320. 1.80 🔬 Key QSAR Insights: • Lipinski-compliant compounds show better drug-like properties • Optimal logP around 2-3 for bioactivity • Molecular weight <500 Da preferred for oral drugs • R integration enables rapid cheminformatics analysis!
Image in a Jupyter notebook

---## From Computational Chemistry and R Integration to Interactive Practice ProblemsWe've explored computational chemistry and r integration, understanding how these fundamental concepts shape our understanding of molecular interactions and chemical behavior.But how do these principles extend to interactive practice problems?In Chapter 8, we'll discover how the concepts we've just learned provide the foundation for understanding even more complex chemical phenomena. You'll see how the principles of bonding and molecular structure directly influence the properties and behaviors we observe in real-world applications.### Journey ForwardThe transition from chapter 7 to chapter 8 represents a natural progression in chemical understanding. The foundational knowledge you've gained here will illuminate the advanced concepts ahead.Continue to Chapter 8: Interactive Practice Problems →orReturn to Main Notebook