习题2.3: 1.求解下列方程:
(8)(x+2y)dx+xdy=0 解:原方程可化为xdx+2ydx+xdy=0 方程两边同时积分有: ∫ xdx=0可得到方程的通解为(1/2)x^=c
(9){x*cos(x+y)+sin(x+y)}dx+xcos(x+y)dy=0
解:令xcos(x+y)+sin(x+y)=M, xcos(x+y)=N则
M对y求偏导有My=-xsin(x+y)+cos(x+y) N对x求偏导有Nx=cos(x+y)-xsin(x+y)
故原方程为恰当微分方程,通解为U(x,y)=c
现求通解Ux,∂U/∂x=xcos(x+y)+sin(x+y) ∂U/∂y=xcos(x+y) U= xsin(x+y)+Fy ∂U/∂y=xcos(x+y)+dF/dy=xcos(x+y) 故Fy=c 因此通解U=xsin(x+y)+c
(10)(ycosx-xsinx)dx+(ysinx+xcosx)dy=0 解:(ycosx-xsinx)=M, (ysinx+xcosx)=N ∂M/∂y=cosx ∂N/∂x=ycosx+cosx-xsinx,(∂M/∂y-∂N/∂x)/-M=1 故存在积分因子u=e^y 将u=e^y乘在方程(ycosx-xsinx)dx+(ysinx+xcosx)dy=0两边有:
e^y(ycosx-xsinx)dx+(ysinx+xcosx)dy=0, 故解得通解为(e^y)xcosx+(e^y)(y-1)sinx=c
(11)x(4ydx+2xdy)+y^3(3ydx+5xdy)=0
解: 用(x^2)y乘以方程两边得4x^2y^2dx+2x^4ydy+3x^2y^5dx+5x^3y^4dy=0
即:y^2d(x^4)+x^4dy^2+y^5dx^3+x^3dy^5=0
d(x^4y^2+x^3y^5)=0,两边积分即可得到方程的通解为x^4y^2+x^3y^5=c
4.设f(x,y)及∂X/∂y连续,试证方程dy-f(x,y)dx=0为线性微分方程的充分必要条件是它有仅依赖x的积分因子.
证明:1.先证必要性:若方程为线性微分方程,则有
dy/dx=P(x)y+Q(x)此方程有积分因子U(x)=e^(∫P(x)dx),U(x)只与x有关
2.再证充分性:若该方程有只与x有关的积分因子U(x)则U(x)dy-U(x)f(x,y)dx=0为恰当方程,从而(∂(-U(x)f(x,y))/∂y= dU(x)/dx,∂f/∂y=U'(x)/U(x)
f=-∫(U'(x)/U(x))dy+Q(x)=P(x)y+Q(x)其中P(x)=-(U'(x)/U(x))于是方程化为dy-(P(x)y+Q(x))dx=0即为一线性微分方程
8.求出伯努力微分方程的积分因子
解:伯努力微分方程为dy/dx+p(x)*y=q(x)y^n,则:
将伯努利方程两边同乘以y^(-n),得y^(-n)dy/dx+p(x)*y^(1-n)=q(x)
注意到y^(-n)dy/dx=[1/(1-n)]*d[y^(1-n)]/dx
即伯努利方程转化为了一次线性方程的形式,易知一次线性方程他的积分因子是exp[(1-n)*(∫p(x)dy)]
习题2.4
求解下列方程:
1.xy'^3=1+y'
解:令y’=dy/dx=1/p,则x*1/p^3=1+1/p,解得:x=p^3+p^2
又dy/dx=1/p,则dy=(1/p)dx=(1/p)(3p^2+2p)dp
对dy=(1/p)dx=(1/p)(3p^2+2p)dp两边积分得y=3/2(p^2)+2p+c
因此方程的解为x=p^3+p^2,y=3/2(p^2)+2p+c
解:令y’=dy/dx=tx,则原方程为(t^3)(x^3)-x^3(1-tx)=0,解得x=1/t-t^2
又dy/dx=tx,则dy=dx(tx)=(-1/t^2-2t)(1-t^3),对dy=dx(tx)=(-1/t^2-2t)(1-t^3)两边积分得:y’=1/t-1/2(t^2)=2/5(t^5)+c
3.y=y'^2e^y'
解:令y'=p,y=(p^2)e^p,对两边积分有x=(p+1)e^p+c,特解y=0
4.y(1+y'^2)=2a(a为常数)
解:令y'=tanb,则y=a(1+cos(2b)),又dy/dx=tanb,则对方程变形积分得x=-a(2b+sin2b)+c,特解y=2a
5.x^2+Y'^2=1
解:另y'=cost, 又dy/dx=cost,于是x=sint,y=t/2+1/4(sin2t)+c
6.y^2(y'-1)=(2-y')^2