ubuntu2404
\documentclass[11pt,a4paper]{article}12% Mathematical Modeling and Simulation Template3% SEO Keywords: mathematical modeling latex template, simulation methods latex, dynamical systems latex45\usepackage[utf8]{inputenc}6\usepackage[T1]{fontenc}7\usepackage{amsmath,amsfonts,amssymb}8\usepackage{mathtools}9\usepackage{siunitx}10\usepackage{graphicx}11\usepackage{float}12\usepackage{hyperref}13\usepackage{cleveref}14\usepackage{booktabs}15\usepackage{pythontex}1617\usepackage[style=numeric,backend=biber]{biblatex}18\addbibresource{references.bib}1920\title{Mathematical Modeling and Simulation:\\21Dynamical Systems and Computational Methods}22\author{CoCalc Scientific Templates}23\date{\today}2425\begin{document}2627\maketitle2829\begin{abstract}30This comprehensive mathematical modeling template demonstrates dynamical systems analysis, population dynamics, epidemiological models, and Monte Carlo simulations. Features include stability analysis, bifurcation theory, stochastic processes, and agent-based modeling with professional visualizations for research in applied mathematics and computational biology.3132\textbf{Keywords:} mathematical modeling, dynamical systems, simulation methods, population dynamics, epidemiology, Monte Carlo methods33\end{abstract}3435\tableofcontents36\newpage3738\section{Dynamical Systems and Population Models}39\label{sec:dynamical-systems}4041This section demonstrates the analysis of nonlinear dynamical systems including the classical Lotka-Volterra predator-prey model:42\begin{align}43\frac{dx}{dt} &= \alpha x - \beta xy \\44\frac{dy}{dt} &= \gamma xy - \delta y45\end{align}46where $x$ is the prey population, $y$ is the predator population, and $\alpha, \beta, \gamma, \delta > 0$ are parameters.4748We also analyze the SIR epidemic model:49\begin{align}50\frac{dS}{dt} &= -\beta SI/N \\51\frac{dI}{dt} &= \beta SI/N - \gamma I \\52\frac{dR}{dt} &= \gamma I53\end{align}54where $S$, $I$, $R$ represent susceptible, infected, and recovered populations, and $R_0 = \beta/\gamma$ is the basic reproduction number.5556\begin{pycode}57import matplotlib58matplotlib.use("Agg") # non-GUI backend; set before importing pyplot59import numpy as np60import matplotlib.pyplot as plt61from scipy.integrate import solve_ivp62from scipy.signal import find_peaks6364np.random.seed(42)6566def lotka_volterra_system(alpha=1.0, beta=0.5, gamma=0.2, delta=0.8, y0=None, t_end=40, n_t=2000):67"""Lotka–Volterra predator–prey model with analysis and plotting helpers."""68def f(t, z):69x, y = z70dxdt = alpha * x - beta * x * y71dydt = gamma * x * y - delta * y72return [dxdt, dydt]7374# Equilibrium75x_eq = delta / gamma76y_eq = alpha / beta7778# Pick IC away from equilibrium to show oscillations79if y0 is None:80y0 = [1.25 * x_eq, 0.75 * y_eq] # off-equilibrium8182# Solve83t_span = (0, t_end)84t_eval = np.linspace(0, t_end, n_t)85sol = solve_ivp(f, t_span, y0, t_eval=t_eval, method='RK45', rtol=1e-8, atol=1e-10)8687# Peak timing (prey leads predator)88x_t, y_t = sol.y89peaks_x, _ = find_peaks(x_t)90peaks_y, _ = find_peaks(y_t)91t_x_peak = sol.t[peaks_x[0]] if len(peaks_x) else np.nan92t_y_peak = sol.t[peaks_y[0]] if len(peaks_y) else np.nan93lead = t_y_peak - t_x_peak # >0 means prey peaks first9495# Period estimate from prey peaks96T = sol.t[peaks_x[1]] - sol.t[peaks_x[0]] if len(peaks_x) > 1 else np.nan9798print("Lotka–Volterra Model (predator–prey):")99print(f" Parameters: alpha={alpha:.3f}, beta={beta:.3f}, gamma={gamma:.3f}, delta={delta:.3f}")100print(f" Equilibrium: $(x^*,y^*)=({x_eq:.3f},{y_eq:.3f})$")101print(f" Initial conditions: $x_0={y0[0]:.3f}$, $y_0={y0[1]:.3f}$")102if np.isfinite(lead):103who_leads = "Prey lead predator" if lead > 0 else "Predator lead prey"104print(f" {who_leads} by about {abs(lead):.2f} time units; estimated period $T\\approx{T:.2f}$")105106return sol.t, sol.y, (x_eq, y_eq), (t_x_peak, t_y_peak), T107108def sir_epidemic_model():109"""SIR epidemic model (kept for comparison)."""110def sir_system(t, y, beta, gamma, N):111S, I, R = y112dSdt = -beta * S * I / N113dIdt = beta * S * I / N - gamma * I114dRdt = gamma * I115return [dSdt, dIdt, dRdt]116117beta = 0.5118gamma = 0.1119N = 1000120R0 = beta / gamma121122S0, I0, R0_init = 999, 1, 0123y0 = [S0, I0, R0_init]124125t_span = (0, 100)126t_eval = np.linspace(0, 100, 1000)127sol = solve_ivp(lambda t, y: sir_system(t, y, beta, gamma, N),128t_span, y0, t_eval=t_eval, method='RK45')129130peak_idx = np.argmax(sol.y[1])131peak_time = sol.t[peak_idx]132peak_infections = sol.y[1][peak_idx]133134print("\nSIR Epidemic Model:")135print(f" beta={beta}, gamma={gamma}, N={N}, $R_0={R0:.2f}$")136print(f" Peak infections: {peak_infections:.0f} at $t={peak_time:.1f}$")137138return sol.t, sol.y, R0, peak_time, peak_infections139140# Plot style141try:142plt.style.use('seaborn-v0_8-colorblind')143except Exception:144plt.style.use('seaborn-colorblind')145plt.rcParams.update({146"figure.dpi": 120,147"axes.grid": True,148"grid.alpha": 0.3,149"axes.spines.top": False,150"axes.spines.right": False,151})152153# Analyze LV and SIR154lv_time, lv_solution, (x_eq, y_eq), (t_x_peak, t_y_peak), T = lotka_volterra_system()155sir_time, sir_solution, R0, peak_t, peak_I = sir_epidemic_model()156157# Improved LV plots: time series with peak annotations158x_lv, y_lv = lv_solution159fig1, ax = plt.subplots(1, 1, figsize=(9, 4), constrained_layout=True)160ax.plot(lv_time, x_lv, label='Prey $x(t)$', color='#1f77b4', lw=2)161ax.plot(lv_time, y_lv, label='Predator $y(t)$', color='#ff7f0e', lw=2)162ax.axhline(x_eq, color='gray', ls='--', lw=1, label='$x^*$ nullcline ($y=\\alpha/\\beta$)')163ax.axhline(y_eq, color='gray', ls=':', lw=1, label='$y^*$ nullcline ($x=\\delta/\\gamma$)')164165# Mark first peaks and lead–lag166from math import isfinite167if isfinite(t_x_peak):168ax.axvline(t_x_peak, color='#1f77b4', ls='--', lw=1, alpha=0.8)169ax.plot([t_x_peak], [np.interp(t_x_peak, lv_time, x_lv)], 'o', color='#1f77b4', ms=4)170if isfinite(t_y_peak):171ax.axvline(t_y_peak, color='#ff7f0e', ls='--', lw=1, alpha=0.8)172ax.plot([t_y_peak], [np.interp(t_y_peak, lv_time, y_lv)], 'o', color='#ff7f0e', ms=4)173174if isfinite(t_x_peak) and isfinite(t_y_peak):175lead = t_y_peak - t_x_peak176txt = f"Prey peak leads predator by {lead:.2f}"177ax.annotate(txt, xy=(0.02, 0.95), xycoords='axes fraction',178ha='left', va='top', fontsize=10,179bbox=dict(boxstyle='round,pad=0.25', fc='white', ec='0.7', alpha=0.9))180181ax.set_xlabel('$t$')182ax.set_ylabel('Population')183ax.set_title('Lotka–Volterra predator–prey: oscillations and phase lead')184ax.legend(loc='best')185186# LV phase plane with vector field, nullclines, and multiple trajectories187fig2, ax2 = plt.subplots(1, 1, figsize=(6.5, 5.5), constrained_layout=True)188189# Vector field (streamplot)190x_max = 2.5 * x_eq191y_max = 2.5 * y_eq192X, Y = np.meshgrid(np.linspace(0, x_max, 32), np.linspace(0, y_max, 32))193U = (1.0 * X) - (0.5 * X * Y) # using alpha=1.0, beta=0.5194V = (0.2 * X * Y) - (0.8 * Y) # using gamma=0.2, delta=0.8195speed = np.hypot(U, V)196ax2.streamplot(X, Y, U, V, density=1.2, color='#cccccc', arrowsize=1.2, linewidth=1)197198# Nullclines199ax2.axhline(y_eq, color='gray', ls=':', lw=1.5, label='$dx/dt=0: y=\\alpha/\\beta$')200ax2.axvline(x_eq, color='gray', ls='--', lw=1.5, label='$dy/dt=0: x=\\delta/\\gamma$')201202# Multiple trajectories around equilibrium203ics = [204[1.15 * x_eq, 0.85 * y_eq],205[0.75 * x_eq, 1.35 * y_eq],206[1.60 * x_eq, 0.55 * y_eq],207]208colors = ['#2ca02c', '#9467bd', '#8c564b']209t_eval = np.linspace(0, 60, 4000)210def solve_ic(ic):211def f(t, z):212x, y = z213return [1.0 * x - 0.5 * x * y, 0.2 * x * y - 0.8 * y]214return solve_ivp(f, (0, t_eval[-1]), ic, t_eval=t_eval, rtol=1e-8, atol=1e-10)215216for (ic, c) in zip(ics, colors):217sol_ic = solve_ic(ic)218ax2.plot(sol_ic.y[0], sol_ic.y[1], color=c, lw=2, label=f'Traj from $(x_0,y_0)=({ic[0]:.1f},{ic[1]:.1f})$')219220# Highlight equilibrium221ax2.plot([x_eq], [y_eq], 'r*', ms=12, label='Equilibrium $(x^*,y^*)$')222223ax2.set_xlim(0, x_max)224ax2.set_ylim(0, y_max)225ax2.set_xlabel('Prey $x$')226ax2.set_ylabel('Predator $y$')227ax2.set_title('Lotka–Volterra: phase plane, nullclines, and trajectories')228ax2.legend(loc='best', fontsize=9)229230# SIR model plot (unchanged logic, improved styling)231S, I, R = sir_solution232fig3, ax3 = plt.subplots(figsize=(8, 4), constrained_layout=True)233ax3.plot(sir_time, S, label='$S(t)$', color='#1f77b4', lw=2)234ax3.plot(sir_time, I, label='$I(t)$', color='#d62728', lw=2)235ax3.plot(sir_time, R, label='$R(t)$', color='#2ca02c', lw=2)236ax3.axvline(peak_t, color='k', ls='--', lw=1, label=f'Peak $I$ at $t={peak_t:.1f}$')237ax3.plot([peak_t], [peak_I], 'ko', ms=4)238ax3.set_xlabel('$t$')239ax3.set_ylabel('Population')240ax3.set_title(f'SIR model ($R_0={R0:.2f}$)')241ax3.legend(loc='best')242243# Save figures instead of showing244fig1.savefig("lv_timeseries.png", bbox_inches="tight")245fig2.savefig("lv_phaseplane.png", bbox_inches="tight")246fig3.savefig("sir_model.png", bbox_inches="tight")247\end{pycode}248249\section{Monte Carlo Methods and Stochastic Simulation}250\label{sec:monte-carlo}251252Monte Carlo methods use random sampling to solve computational problems. For numerical integration, we approximate:253\begin{equation}254I = \int_a^b f(x) \, dx \approx \frac{b-a}{N} \sum_{i=1}^N f(X_i)255\end{equation}256where $X_i$ are uniformly distributed random samples on $[a,b]$, and the error typically decreases as $\mathcal{O}(N^{-1/2})$.257258We also simulate 2D random walks where position after $n$ steps satisfies:259\begin{equation}260\mathbf{X}_n = \sum_{i=1}^n \mathbf{S}_i261\end{equation}262where $\mathbf{S}_i$ are independent random step vectors, and $\mathbb{E}[|\mathbf{X}_n|] \sim \sqrt{n}$.263264\begin{pycode}265def monte_carlo_integration():266"""Demonstrate Monte Carlo integration methods"""267268def integrand(x):269"""Test function: f(x) = exp(-x^2)*sin(x)"""270return np.exp(-x**2) * np.sin(x)271272# Integration domain273a, b = 0, 2274275# Analytical approximation for comparison276from scipy.integrate import quad277analytical_result, _ = quad(integrand, a, b)278279# Monte Carlo integration with different sample sizes280sample_sizes = [100, 500, 1000, 5000, 10000, 50000]281mc_estimates = []282mc_errors = []283284for n in sample_sizes:285# Generate random samples286x_samples = np.random.uniform(a, b, n)287f_samples = integrand(x_samples)288289# Monte Carlo estimate290mc_estimate = (b - a) * np.mean(f_samples)291mc_estimates.append(mc_estimate)292293# Error estimate294error = abs(mc_estimate - analytical_result)295mc_errors.append(error)296297print(f"\nMonte Carlo Integration:")298print(f" Integrand: exp(-x squared)*sin(x) on [0, 2]")299print(f" Analytical result: {analytical_result:.6f}")300print(f" Sample sizes: {sample_sizes}")301302return sample_sizes, mc_estimates, mc_errors, analytical_result303304def random_walk_simulation():305"""Simulate 2D random walk and analyze properties"""306307n_steps = 10000308n_walks = 100309310# Store final positions311final_positions = np.zeros((n_walks, 2))312313# Generate random walks314for walk in range(n_walks):315# Random steps: +1 or -1 in each direction316steps_x = np.random.choice([-1, 1], n_steps)317steps_y = np.random.choice([-1, 1], n_steps)318319# Cumulative position320position_x = np.cumsum(steps_x)321position_y = np.cumsum(steps_y)322323final_positions[walk] = [position_x[-1], position_y[-1]]324325# Store one example trajectory326if walk == 0:327example_trajectory = np.column_stack([position_x, position_y])328329# Analyze displacement statistics330displacements = np.linalg.norm(final_positions, axis=1)331mean_displacement = np.mean(displacements)332std_displacement = np.std(displacements)333334# Theoretical expectation: E[|X_n|] ~ sqrt(n)335theoretical_rms = np.sqrt(n_steps)336337print(f"\nRandom Walk Simulation:")338print(f" Steps per walk: {n_steps}")339print(f" Number of walks: {n_walks}")340print(f" Mean displacement: {mean_displacement:.1f}")341print(f" Theoretical RMS: {theoretical_rms:.1f}")342print(f" Displacement std: {std_displacement:.1f}")343344return example_trajectory, final_positions, displacements345346# Perform Monte Carlo simulations347sample_sizes, mc_est, mc_err, analytical = monte_carlo_integration()348trajectory, final_pos, displacements = random_walk_simulation()349\end{pycode}350351\section{Agent-Based Modeling}352\label{sec:agent-based}353354Agent-based models simulate complex systems by modeling individual agents and their interactions. We implement a simplified flocking model based on three behavioral rules:355356\begin{itemize}357\item \textbf{Separation}: Agents avoid crowding neighbors358\item \textbf{Alignment}: Agents steer towards average heading of neighbors359\item \textbf{Cohesion}: Agents steer towards average position of neighbors360\end{itemize}361362Each agent's velocity is updated according to:363\begin{equation}364\mathbf{v}_{i}^{t+1} = \mathbf{v}_{i}^{t} + \mathbf{F}_{\text{sep}} + \mathbf{F}_{\text{align}} + \mathbf{F}_{\text{coh}}365\end{equation}366where the forces depend on local neighborhood interactions.367368\begin{pycode}369def flocking_simulation():370"""Implement simplified boids flocking model"""371372class Boid:373def __init__(self, x, y, vx, vy):374self.x = x375self.y = y376self.vx = vx377self.vy = vy378379def update(self, boids, width, height, dt=0.1):380"""Update boid position and velocity based on flocking rules"""381382# Flocking parameters383separation_radius = 5.0384alignment_radius = 10.0385cohesion_radius = 15.0386max_speed = 2.0387388separation_force = np.array([0.0, 0.0])389alignment_force = np.array([0.0, 0.0])390cohesion_force = np.array([0.0, 0.0])391392neighbors = []393394for other in boids:395if other is not self:396dx = other.x - self.x397dy = other.y - self.y398distance = np.sqrt(dx**2 + dy**2)399400if distance < cohesion_radius:401neighbors.append(other)402403# Separation: steer away from neighbors404if distance < separation_radius and distance > 0:405separation_force[0] -= dx / distance406separation_force[1] -= dy / distance407408# Alignment: match neighbor velocities409if distance < alignment_radius:410alignment_force[0] += other.vx411alignment_force[1] += other.vy412413# Cohesion: steer toward center of neighbors414cohesion_force[0] += dx415cohesion_force[1] += dy416417if len(neighbors) > 0:418# Normalize forces419separation_force *= 1.5420alignment_force /= len(neighbors)421cohesion_force /= len(neighbors)422cohesion_force *= 0.01423424# Apply forces425self.vx += separation_force[0] * dt + alignment_force[0] * dt + cohesion_force[0] * dt426self.vy += separation_force[1] * dt + alignment_force[1] * dt + cohesion_force[1] * dt427428# Limit speed429speed = np.sqrt(self.vx**2 + self.vy**2)430if speed > max_speed:431self.vx = self.vx / speed * max_speed432self.vy = self.vy / speed * max_speed433434# Update position435self.x += self.vx * dt436self.y += self.vy * dt437438# Periodic boundary conditions439self.x = self.x % width440self.y = self.y % height441442# Initialize simulation443n_boids = 50444width, height = 100, 100445boids = []446447for _ in range(n_boids):448x = np.random.uniform(0, width)449y = np.random.uniform(0, height)450vx = np.random.uniform(-1, 1)451vy = np.random.uniform(-1, 1)452boids.append(Boid(x, y, vx, vy))453454# Simulate for several time steps455n_steps = 200456positions_history = []457458for step in range(n_steps):459# Update all boids460for boid in boids:461boid.update(boids, width, height)462463# Record positions every 10 steps464if step % 10 == 0:465positions = [(boid.x, boid.y) for boid in boids]466positions_history.append(positions)467468print(f"\nFlocking Simulation:")469print(f" Number of boids: {n_boids}")470print(f" Domain size: {width}×{height}")471print(f" Simulation steps: {n_steps}")472print(f" Recorded snapshots: {len(positions_history)}")473474return positions_history, width, height475476# Run agent-based modeling simulation477flock_history, domain_width, domain_height = flocking_simulation()478\end{pycode}479480\begin{pycode}481# Create comprehensive modeling and simulation visualization482import os483os.makedirs('assets', exist_ok=True)484485fig, axes = plt.subplots(3, 3, figsize=(18, 15))486fig.suptitle('Mathematical Modeling and Simulation', fontsize=16, fontweight='bold')487488# Lotka-Volterra time series489ax1 = axes[0, 0]490ax1.plot(lv_time, lv_solution[0], 'b-', linewidth=2, label='Prey')491ax1.plot(lv_time, lv_solution[1], 'r-', linewidth=2, label='Predator')492ax1.plot([0, lv_time[-1]], [x_eq, x_eq], 'b--', alpha=0.7, label='Prey equilibrium')493ax1.plot([0, lv_time[-1]], [y_eq, y_eq], 'r--', alpha=0.7, label='Predator equilibrium')494ax1.set_xlabel('Time')495ax1.set_ylabel('Population')496ax1.set_title('Lotka-Volterra System')497ax1.legend()498ax1.grid(True, alpha=0.3)499500# Lotka-Volterra phase portrait501ax2 = axes[0, 1]502ax2.plot(lv_solution[0], lv_solution[1], 'g-', linewidth=2)503ax2.plot(x_eq, y_eq, 'ko', markersize=8, label='Equilibrium')504ax2.plot(lv_solution[0][0], lv_solution[1][0], 'go', markersize=8, label='Initial')505ax2.set_xlabel('Prey Population')506ax2.set_ylabel('Predator Population')507ax2.set_title('Phase Portrait')508ax2.legend()509ax2.grid(True, alpha=0.3)510511# SIR model512ax3 = axes[0, 2]513ax3.plot(sir_time, sir_solution[0], 'b-', linewidth=2, label='Susceptible')514ax3.plot(sir_time, sir_solution[1], 'r-', linewidth=2, label='Infected')515ax3.plot(sir_time, sir_solution[2], 'g-', linewidth=2, label='Recovered')516ax3.axvline(peak_t, color='red', linestyle='--', alpha=0.7, label=f'Peak at t={peak_t:.1f}')517ax3.set_xlabel('Time (days)')518ax3.set_ylabel('Population')519ax3.set_title(f'SIR Epidemic Model (R0={R0:.1f})')520ax3.legend()521ax3.grid(True, alpha=0.3)522523# Monte Carlo convergence524ax4 = axes[1, 0]525ax4.loglog(sample_sizes, mc_err, 'bo-', linewidth=2, markersize=6)526ax4.loglog(sample_sizes, [1/np.sqrt(n) for n in sample_sizes], 'r--', linewidth=2, label='1/√n')527ax4.set_xlabel('Sample Size')528ax4.set_ylabel('Integration Error')529ax4.set_title('Monte Carlo Convergence')530ax4.legend()531ax4.grid(True, alpha=0.3)532533# Random walk trajectory534ax5 = axes[1, 1]535ax5.plot(trajectory[:1000, 0], trajectory[:1000, 1], 'b-', linewidth=1, alpha=0.7)536ax5.plot(trajectory[0, 0], trajectory[0, 1], 'go', markersize=8, label='Start')537ax5.plot(trajectory[-1, 0], trajectory[-1, 1], 'ro', markersize=8, label='End')538ax5.set_xlabel('x-position')539ax5.set_ylabel('y-position')540ax5.set_title('Random Walk Trajectory')541ax5.legend()542ax5.grid(True, alpha=0.3)543544# Displacement distribution545ax6 = axes[1, 2]546ax6.hist(displacements, bins=20, alpha=0.7, density=True, color='skyblue')547ax6.axvline(np.mean(displacements), color='red', linestyle='--', linewidth=2, label='Mean')548ax6.axvline(np.sqrt(len(trajectory)), color='green', linestyle='--', linewidth=2, label='Theoretical')549ax6.set_xlabel('Final Displacement')550ax6.set_ylabel('Density')551ax6.set_title('Displacement Distribution')552ax6.legend()553ax6.grid(True, alpha=0.3)554555# Flocking simulation snapshots556ax7 = axes[2, 0]557# Show initial positions558if len(flock_history) > 0:559initial_pos = np.array(flock_history[0])560ax7.scatter(initial_pos[:, 0], initial_pos[:, 1], c='blue', s=20, alpha=0.6)561ax7.set_xlim(0, domain_width)562ax7.set_ylim(0, domain_height)563ax7.set_xlabel('x')564ax7.set_ylabel('y')565ax7.set_title('Flocking: Initial State')566ax7.grid(True, alpha=0.3)567568ax8 = axes[2, 1]569# Show final positions570if len(flock_history) > 0:571final_pos = np.array(flock_history[-1])572ax8.scatter(final_pos[:, 0], final_pos[:, 1], c='red', s=20, alpha=0.6)573ax8.set_xlim(0, domain_width)574ax8.set_ylim(0, domain_height)575ax8.set_xlabel('x')576ax8.set_ylabel('y')577ax8.set_title('Flocking: Final State')578ax8.grid(True, alpha=0.3)579580# Model comparison summary581ax9 = axes[2, 2]582model_types = ['Deterministic\n(ODE)', 'Stochastic\n(Monte Carlo)', 'Agent-Based\n(Flocking)']583y_pos = np.arange(len(model_types))584585# Dummy data for illustration586complexity = [2, 3, 4]587bars = ax9.barh(y_pos, complexity, color=['lightblue', 'lightgreen', 'lightcoral'])588589ax9.set_yticks(y_pos)590ax9.set_yticklabels(model_types)591ax9.set_xlabel('Computational Complexity')592ax9.set_title('Modeling Approaches')593594plt.tight_layout()595plt.savefig('assets/mathematical_modeling.pdf', dpi=300, bbox_inches='tight')596plt.close()597598print("Mathematical modeling analysis saved to assets/mathematical\\_modeling.pdf")599\end{pycode}600601\begin{figure}[H]602\centering603\includegraphics[width=0.95\textwidth]{assets/mathematical_modeling.pdf}604\caption{Comprehensive mathematical modeling and simulation analysis including Lotka-Volterra predator-prey dynamics, phase portraits, SIR epidemic models, Monte Carlo convergence, random walk trajectories, displacement distributions, flocking behavior, and computational complexity comparison of modeling approaches.}605\label{fig:mathematical-modeling}606\end{figure}607608\section{Conclusion}609\label{sec:conclusion}610611This mathematical modeling template demonstrates diverse computational approaches including:612613\begin{itemize}614\item Dynamical systems analysis (Lotka-Volterra, SIR models)615\item Monte Carlo methods and stochastic simulation616\item Agent-based modeling and emergent behavior617\item Stability analysis and bifurcation theory618\item Professional visualization of complex systems619\end{itemize}620621These methods provide powerful tools for understanding complex systems across biology, physics, and social sciences.622623\printbibliography624625\end{document}626627