Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
90 views
ubuntu2204
Kernel: SageMath 10.0
#from sage.arith.misc import legendre_symbol # sage.sage.rings.number_field import NumberField #from sage.rings.all import NumberField class color: BLUE = '\033[94m' YELLOW = '\033[93m' BOLD = '\033[1m' END = '\033[0m' #from sage.all import * from pprint import pprint import json preparser(True) import sys print(sys.version_info) lista=[] listb=[] #Don't increase so much at once #Let's check for 5000 First #Then gradually increase for i in range(1,50000): factoring = factor(sage_eval(str(i))) factors = str(factoring).split('*') #print(factors) if(len(factors) !=4): i=i #print("Not P^m*Q^n\n") else: factP = factors[0].split('^') factQ = factors[1].split('^') factR = factors[2].split('^') factS = factors[3].split('^') if(len(factP)>1 or len(factQ)>1 or len(factR)>1 or len(factS)>1): #print(factP) #print(factQ) #print("Not of the form P^1*Q^1 \n") i=i else: if((int(factP[0])==2) and ((int(factQ[0])%8==1 and int(factR[0])%8==5 and int(factS[0])%8==5) or (int(factQ[0])%8==5 and int(factR[0])%8==1 and int(factS[0])%8==5) or (int(factQ[0])%8==5 and int(factR[0])%8==5 and int(factS[0])%8==1))): #print(i,int(factP[0]), int(factQ[0])) fact_str="n = "+str(i)+" p = "+str(int(factQ[0]))+" q = "+str(int(factR[0]))+" r = "+str(int(factS[0])) lspq=legendre_symbol(int(factQ[0]), int(factR[0])) lspr=legendre_symbol(int(factQ[0]), int(factS[0])) lsqr=legendre_symbol(int(factR[0]), int(factS[0])) lspq_str="(i) Legendre Symbol ((p/q) is: "+str(lspq) lspr_str="(ii) Legendre Symbol (p/r) is: "+str(lspr) lsqr_str="(iii) Legendre Symbol (q/r) is: "+str(lsqr) #print("(i) Legendre Symbol is: ", ls) #lista.insert(i,i) E = EllipticCurve([0,0,0,-i^2,0]) E_str=str(E) #print(E) rank = E.analytic_rank(algorithm='pari', leading_coefficient=False) #print("(iv) Rank is:", rank) rank_str="(iv) Rank is:"+str(rank) K.<a> = NumberField(x^2+i/2) cn1 = K.class_number() #print("(v) Class Number of Q(sqrt(-n)) is:", cn) cn1_str="(v) Class Number of Q(sqrt(-n)) is:" + str(cn1) K.<a> = NumberField(x^2+i) cn2 = K.class_number() cn2_str="(vi) Class Number of Q(sqrt(-2n)) is:" + str(cn2) K.<a> = NumberField(x^2-i/2) cn3 = K.class_number() cn3_str="(vii) Class Number of Q(sqrt(n)) is:" + str(cn3) K.<a> = NumberField(x^2-i) cn4 = K.class_number() cn4_str="(viii) Class Number of Q(sqrt(2n)) is:" + str(cn4) end_str="-----------------" #print("(iv) Class Number of Q(sqrt(n)) is:", cn) #final_str = [] if(rank!=0): #lista.append(final_str) lista.append(fact_str) lista.append(lspq_str) lista.append(lspr_str) lista.append(E_str) lista.append(rank_str) lista.append(cn1_str) lista.append(cn2_str) lista.append(cn3_str) lista.append(cn4_str) lista.append(end_str) elif(rank==0): #listb.append(final_str) listb.append(fact_str) listb.append(lspq_str) listb.append(lsqr_str) listb.append(E_str) listb.append(rank_str) listb.append(cn1_str) listb.append(cn2_str) listb.append(cn3_str) listb.append(cn4_str) listb.append(end_str) #print(E.sha()) #try: #ord = S.an(descent_second_limit=30) #ord=S.p_primary_order(2) #print("(v) 2-Primary Order is: ", ord) #except: #print("Error in calculating 2-Primary Order") #print("----------------------") print(color.BOLD + "FIRST CASE RANK: POSITIVE" + color.END) print("-------------************************-------------") #print(json.dumps(lista, indent=2)) #pprint(lista) #print '\n'.join(lista) print(*lista, sep='\n') print("-------------************************-------------") print("SECOND CASE RANK=0") print("-------------************************-------------") #print(json.dumps(listb, indent=2)) #pprint(listb) print(*listb, sep='\n') print("-------------************************-------------") #pprint(listd) #print(json.dumps(listd, indent=2)) #pprint("Rank 2, LS 1", lista) #pprint("Rank 2, LS -1", listb) #pprint("Rank 0, LS 1", listc) #pprint("Rank 0, LS -1", listd) #print("List B", listb)
sys.version_info(major=3, minor=11, micro=1, releaselevel='final', serial=0) FIRST CASE RANK: POSITIVE -------------************************------------- n = 6290 p = 5 q = 17 r = 37 (i) Legendre Symbol ((p/q) is: -1 (ii) Legendre Symbol (p/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 39564100*x over Rational Field (iv) Rank is:2 (v) Class Number of Q(sqrt(-n)) is:32 (vi) Class Number of Q(sqrt(-2n)) is:48 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 9490 p = 5 q = 13 r = 73 (i) Legendre Symbol ((p/q) is: -1 (ii) Legendre Symbol (p/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 90060100*x over Rational Field (iv) Rank is:2 (v) Class Number of Q(sqrt(-n)) is:80 (vi) Class Number of Q(sqrt(-2n)) is:64 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:16 ----------------- n = 10370 p = 5 q = 17 r = 61 (i) Legendre Symbol ((p/q) is: -1 (ii) Legendre Symbol (p/r) is: 1 Elliptic Curve defined by y^2 = x^3 - 107536900*x over Rational Field (iv) Rank is:2 (v) Class Number of Q(sqrt(-n)) is:32 (vi) Class Number of Q(sqrt(-2n)) is:144 (vii) Class Number of Q(sqrt(n)) is:20 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 15170 p = 5 q = 37 r = 41 (i) Legendre Symbol ((p/q) is: -1 (ii) Legendre Symbol (p/r) is: 1 Elliptic Curve defined by y^2 = x^3 - 230128900*x over Rational Field (iv) Rank is:2 (v) Class Number of Q(sqrt(-n)) is:32 (vi) Class Number of Q(sqrt(-2n)) is:96 (vii) Class Number of Q(sqrt(n)) is:8 (viii) Class Number of Q(sqrt(2n)) is:16 ----------------- n = 17810 p = 5 q = 13 r = 137 (i) Legendre Symbol ((p/q) is: -1 (ii) Legendre Symbol (p/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 317196100*x over Rational Field (iv) Rank is:2 (v) Class Number of Q(sqrt(-n)) is:48 (vi) Class Number of Q(sqrt(-2n)) is:80 (vii) Class Number of Q(sqrt(n)) is:12 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 18530 p = 5 q = 17 r = 109 (i) Legendre Symbol ((p/q) is: -1 (ii) Legendre Symbol (p/r) is: 1 Elliptic Curve defined by y^2 = x^3 - 343360900*x over Rational Field (iv) Rank is:2 (v) Class Number of Q(sqrt(-n)) is:48 (vi) Class Number of Q(sqrt(-2n)) is:128 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:16 ----------------- n = 21170 p = 5 q = 29 r = 73 (i) Legendre Symbol ((p/q) is: 1 (ii) Legendre Symbol (p/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 448168900*x over Rational Field (iv) Rank is:2 (v) Class Number of Q(sqrt(-n)) is:48 (vi) Class Number of Q(sqrt(-2n)) is:96 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:16 ----------------- n = 30914 p = 13 q = 29 r = 41 (i) Legendre Symbol ((p/q) is: 1 (ii) Legendre Symbol (p/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 955675396*x over Rational Field (iv) Rank is:2 (v) Class Number of Q(sqrt(-n)) is:48 (vi) Class Number of Q(sqrt(-2n)) is:144 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 32770 p = 5 q = 29 r = 113 (i) Legendre Symbol ((p/q) is: 1 (ii) Legendre Symbol (p/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 1073872900*x over Rational Field (iv) Rank is:2 (v) Class Number of Q(sqrt(-n)) is:128 (vi) Class Number of Q(sqrt(-2n)) is:96 (vii) Class Number of Q(sqrt(n)) is:12 (viii) Class Number of Q(sqrt(2n)) is:16 ----------------- n = 38690 p = 5 q = 53 r = 73 (i) Legendre Symbol ((p/q) is: -1 (ii) Legendre Symbol (p/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 1496916100*x over Rational Field (iv) Rank is:2 (v) Class Number of Q(sqrt(-n)) is:64 (vi) Class Number of Q(sqrt(-2n)) is:144 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 41810 p = 5 q = 37 r = 113 (i) Legendre Symbol ((p/q) is: -1 (ii) Legendre Symbol (p/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 1748076100*x over Rational Field (iv) Rank is:2 (v) Class Number of Q(sqrt(-n)) is:80 (vi) Class Number of Q(sqrt(-2n)) is:272 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 47090 p = 5 q = 17 r = 277 (i) Legendre Symbol ((p/q) is: -1 (ii) Legendre Symbol (p/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 2217468100*x over Rational Field (iv) Rank is:2 (v) Class Number of Q(sqrt(-n)) is:48 (vi) Class Number of Q(sqrt(-2n)) is:224 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:32 ----------------- -------------************************------------- SECOND CASE RANK=0 -------------************************------------- n = 2210 p = 5 q = 13 r = 17 (i) Legendre Symbol ((p/q) is: -1 (iii) Legendre Symbol (q/r) is: 1 Elliptic Curve defined by y^2 = x^3 - 4884100*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:16 (vi) Class Number of Q(sqrt(-2n)) is:56 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 4930 p = 5 q = 17 r = 29 (i) Legendre Symbol ((p/q) is: -1 (iii) Legendre Symbol (q/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 24304900*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:32 (vi) Class Number of Q(sqrt(-2n)) is:32 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 5330 p = 5 q = 13 r = 41 (i) Legendre Symbol ((p/q) is: -1 (iii) Legendre Symbol (q/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 28408900*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:32 (vi) Class Number of Q(sqrt(-2n)) is:104 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 9010 p = 5 q = 17 r = 53 (i) Legendre Symbol ((p/q) is: -1 (iii) Legendre Symbol (q/r) is: 1 Elliptic Curve defined by y^2 = x^3 - 81180100*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:64 (vi) Class Number of Q(sqrt(-2n)) is:40 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 11570 p = 5 q = 13 r = 89 (i) Legendre Symbol ((p/q) is: -1 (iii) Legendre Symbol (q/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 133864900*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:32 (vi) Class Number of Q(sqrt(-2n)) is:120 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 11890 p = 5 q = 29 r = 41 (i) Legendre Symbol ((p/q) is: 1 (iii) Legendre Symbol (q/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 141372100*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:64 (vi) Class Number of Q(sqrt(-2n)) is:56 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 12610 p = 5 q = 13 r = 97 (i) Legendre Symbol ((p/q) is: -1 (iii) Legendre Symbol (q/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 159012100*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:96 (vi) Class Number of Q(sqrt(-2n)) is:64 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 12818 p = 13 q = 17 r = 29 (i) Legendre Symbol ((p/q) is: 1 (iii) Legendre Symbol (q/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 164301124*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:48 (vi) Class Number of Q(sqrt(-2n)) is:72 (vii) Class Number of Q(sqrt(n)) is:8 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 14690 p = 5 q = 13 r = 113 (i) Legendre Symbol ((p/q) is: -1 (iii) Legendre Symbol (q/r) is: 1 Elliptic Curve defined by y^2 = x^3 - 215796100*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:32 (vi) Class Number of Q(sqrt(-2n)) is:120 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 16354 p = 13 q = 17 r = 37 (i) Legendre Symbol ((p/q) is: 1 (iii) Legendre Symbol (q/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 267453316*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:64 (vi) Class Number of Q(sqrt(-2n)) is:72 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:24 ----------------- n = 17170 p = 5 q = 17 r = 101 (i) Legendre Symbol ((p/q) is: -1 (iii) Legendre Symbol (q/r) is: 1 Elliptic Curve defined by y^2 = x^3 - 294808900*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:96 (vi) Class Number of Q(sqrt(-2n)) is:88 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 21730 p = 5 q = 41 r = 53 (i) Legendre Symbol ((p/q) is: 1 (iii) Legendre Symbol (q/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 472192900*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:96 (vi) Class Number of Q(sqrt(-2n)) is:56 (vii) Class Number of Q(sqrt(n)) is:12 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 23426 p = 13 q = 17 r = 53 (i) Legendre Symbol ((p/q) is: 1 (iii) Legendre Symbol (q/r) is: 1 Elliptic Curve defined by y^2 = x^3 - 548777476*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:32 (vi) Class Number of Q(sqrt(-2n)) is:192 (vii) Class Number of Q(sqrt(n)) is:8 (viii) Class Number of Q(sqrt(2n)) is:16 ----------------- n = 25010 p = 5 q = 41 r = 61 (i) Legendre Symbol ((p/q) is: 1 (iii) Legendre Symbol (q/r) is: 1 Elliptic Curve defined by y^2 = x^3 - 625500100*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:64 (vi) Class Number of Q(sqrt(-2n)) is:144 (vii) Class Number of Q(sqrt(n)) is:16 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 25090 p = 5 q = 13 r = 193 (i) Legendre Symbol ((p/q) is: -1 (iii) Legendre Symbol (q/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 629508100*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:96 (vi) Class Number of Q(sqrt(-2n)) is:96 (vii) Class Number of Q(sqrt(n)) is:20 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 25330 p = 5 q = 17 r = 149 (i) Legendre Symbol ((p/q) is: -1 (iii) Legendre Symbol (q/r) is: 1 Elliptic Curve defined by y^2 = x^3 - 641608900*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:96 (vi) Class Number of Q(sqrt(-2n)) is:88 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 25810 p = 5 q = 29 r = 89 (i) Legendre Symbol ((p/q) is: 1 (iii) Legendre Symbol (q/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 666156100*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:112 (vi) Class Number of Q(sqrt(-2n)) is:56 (vii) Class Number of Q(sqrt(n)) is:16 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 26690 p = 5 q = 17 r = 157 (i) Legendre Symbol ((p/q) is: -1 (iii) Legendre Symbol (q/r) is: 1 Elliptic Curve defined by y^2 = x^3 - 712356100*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:80 (vi) Class Number of Q(sqrt(-2n)) is:200 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 26962 p = 13 q = 17 r = 61 (i) Legendre Symbol ((p/q) is: 1 (iii) Legendre Symbol (q/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 726949444*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:192 (vi) Class Number of Q(sqrt(-2n)) is:72 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 27010 p = 5 q = 37 r = 73 (i) Legendre Symbol ((p/q) is: -1 (iii) Legendre Symbol (q/r) is: 1 Elliptic Curve defined by y^2 = x^3 - 729540100*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:96 (vi) Class Number of Q(sqrt(-2n)) is:56 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 28130 p = 5 q = 29 r = 97 (i) Legendre Symbol ((p/q) is: 1 (iii) Legendre Symbol (q/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 791296900*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:48 (vi) Class Number of Q(sqrt(-2n)) is:144 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:16 ----------------- n = 29410 p = 5 q = 17 r = 173 (i) Legendre Symbol ((p/q) is: -1 (iii) Legendre Symbol (q/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 864948100*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:128 (vi) Class Number of Q(sqrt(-2n)) is:96 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 30290 p = 5 q = 13 r = 233 (i) Legendre Symbol ((p/q) is: -1 (iii) Legendre Symbol (q/r) is: 1 Elliptic Curve defined by y^2 = x^3 - 917484100*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:64 (vi) Class Number of Q(sqrt(-2n)) is:168 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 30770 p = 5 q = 17 r = 181 (i) Legendre Symbol ((p/q) is: -1 (iii) Legendre Symbol (q/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 946792900*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:80 (vi) Class Number of Q(sqrt(-2n)) is:176 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:16 ----------------- n = 31330 p = 5 q = 13 r = 241 (i) Legendre Symbol ((p/q) is: -1 (iii) Legendre Symbol (q/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 981568900*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:112 (vi) Class Number of Q(sqrt(-2n)) is:104 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:40 ----------------- n = 32930 p = 5 q = 37 r = 89 (i) Legendre Symbol ((p/q) is: -1 (iii) Legendre Symbol (q/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 1084384900*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:48 (vi) Class Number of Q(sqrt(-2n)) is:200 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 33410 p = 5 q = 13 r = 257 (i) Legendre Symbol ((p/q) is: -1 (iii) Legendre Symbol (q/r) is: 1 Elliptic Curve defined by y^2 = x^3 - 1116228100*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:80 (vi) Class Number of Q(sqrt(-2n)) is:200 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 33490 p = 5 q = 17 r = 197 (i) Legendre Symbol ((p/q) is: -1 (iii) Legendre Symbol (q/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 1121580100*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:80 (vi) Class Number of Q(sqrt(-2n)) is:80 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:48 ----------------- n = 35890 p = 5 q = 37 r = 97 (i) Legendre Symbol ((p/q) is: -1 (iii) Legendre Symbol (q/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 1288092100*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:80 (vi) Class Number of Q(sqrt(-2n)) is:112 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:16 ----------------- n = 36482 p = 17 q = 29 r = 37 (i) Legendre Symbol ((p/q) is: -1 (iii) Legendre Symbol (q/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 1330936324*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:80 (vi) Class Number of Q(sqrt(-2n)) is:240 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:16 ----------------- n = 36530 p = 5 q = 13 r = 281 (i) Legendre Symbol ((p/q) is: -1 (iii) Legendre Symbol (q/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 1334440900*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:48 (vi) Class Number of Q(sqrt(-2n)) is:168 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 38930 p = 5 q = 17 r = 229 (i) Legendre Symbol ((p/q) is: -1 (iii) Legendre Symbol (q/r) is: 1 Elliptic Curve defined by y^2 = x^3 - 1515544900*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:96 (vi) Class Number of Q(sqrt(-2n)) is:184 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 39442 p = 13 q = 37 r = 41 (i) Legendre Symbol ((p/q) is: -1 (iii) Legendre Symbol (q/r) is: 1 Elliptic Curve defined by y^2 = x^3 - 1555671364*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:144 (vi) Class Number of Q(sqrt(-2n)) is:72 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:40 ----------------- n = 39730 p = 5 q = 29 r = 137 (i) Legendre Symbol ((p/q) is: 1 (iii) Legendre Symbol (q/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 1578472900*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:208 (vi) Class Number of Q(sqrt(-2n)) is:96 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 40690 p = 5 q = 13 r = 313 (i) Legendre Symbol ((p/q) is: -1 (iii) Legendre Symbol (q/r) is: 1 Elliptic Curve defined by y^2 = x^3 - 1655676100*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:192 (vi) Class Number of Q(sqrt(-2n)) is:104 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:24 ----------------- n = 41410 p = 5 q = 41 r = 101 (i) Legendre Symbol ((p/q) is: 1 (iii) Legendre Symbol (q/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 1714788100*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:192 (vi) Class Number of Q(sqrt(-2n)) is:120 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 43810 p = 5 q = 13 r = 337 (i) Legendre Symbol ((p/q) is: -1 (iii) Legendre Symbol (q/r) is: 1 Elliptic Curve defined by y^2 = x^3 - 1919316100*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:96 (vi) Class Number of Q(sqrt(-2n)) is:88 (vii) Class Number of Q(sqrt(n)) is:28 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 44530 p = 5 q = 61 r = 73 (i) Legendre Symbol ((p/q) is: 1 (iii) Legendre Symbol (q/r) is: 1 Elliptic Curve defined by y^2 = x^3 - 1982920900*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:144 (vi) Class Number of Q(sqrt(-2n)) is:104 (vii) Class Number of Q(sqrt(n)) is:8 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 44642 p = 13 q = 17 r = 101 (i) Legendre Symbol ((p/q) is: 1 (iii) Legendre Symbol (q/r) is: 1 Elliptic Curve defined by y^2 = x^3 - 1992908164*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:128 (vi) Class Number of Q(sqrt(-2n)) is:176 (vii) Class Number of Q(sqrt(n)) is:8 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 44690 p = 5 q = 41 r = 109 (i) Legendre Symbol ((p/q) is: 1 (iii) Legendre Symbol (q/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 1997196100*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:48 (vi) Class Number of Q(sqrt(-2n)) is:184 (vii) Class Number of Q(sqrt(n)) is:8 (viii) Class Number of Q(sqrt(2n)) is:24 ----------------- n = 45730 p = 5 q = 17 r = 269 (i) Legendre Symbol ((p/q) is: -1 (iii) Legendre Symbol (q/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 2091232900*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:192 (vi) Class Number of Q(sqrt(-2n)) is:96 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 45890 p = 5 q = 13 r = 353 (i) Legendre Symbol ((p/q) is: -1 (iii) Legendre Symbol (q/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 2105892100*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:96 (vi) Class Number of Q(sqrt(-2n)) is:176 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:16 ----------------- n = 47170 p = 5 q = 53 r = 89 (i) Legendre Symbol ((p/q) is: -1 (iii) Legendre Symbol (q/r) is: 1 Elliptic Curve defined by y^2 = x^3 - 2225008900*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:128 (vi) Class Number of Q(sqrt(-2n)) is:96 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:16 ----------------- n = 48178 p = 13 q = 17 r = 109 (i) Legendre Symbol ((p/q) is: 1 (iii) Legendre Symbol (q/r) is: -1 Elliptic Curve defined by y^2 = x^3 - 2321119684*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:128 (vi) Class Number of Q(sqrt(-2n)) is:72 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- n = 49810 p = 5 q = 17 r = 293 (i) Legendre Symbol ((p/q) is: -1 (iii) Legendre Symbol (q/r) is: 1 Elliptic Curve defined by y^2 = x^3 - 2481036100*x over Rational Field (iv) Rank is:0 (v) Class Number of Q(sqrt(-n)) is:208 (vi) Class Number of Q(sqrt(-2n)) is:120 (vii) Class Number of Q(sqrt(n)) is:4 (viii) Class Number of Q(sqrt(2n)) is:8 ----------------- -------------************************-------------