Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Avatar for Software 20.04.
Download
300 views
ubuntu2004-dev
Kernel: Coq
Require Import Coq.Logic.JMeq. Inductive Le : nat -> nat -> Set := | LeO : forall n:nat, Le 0 n | LeS : forall n m:nat, Le n m -> Le (S n) (S m). Parameter P : nat -> nat -> Prop. Goal forall n m:nat, Le (S n) m -> P n m. intros n m H. generalize_eqs H.
Theorem implication : forall A B : Prop, A -> (A -> B) -> B .
Proof. intros A B. intros proof_of_A. intros A_implies_B. pose (proof_of_B := A_implies_B proof_of_A). exact proof_of_B. Qed.
Theorem t3 : bool. Proof. pose (b1 := true). pose (b2 := false).
exact b2.
Compute match 0 with | 0 => 1 + 1 | S n' => n' end.