# 3D Graphing - from: # http://doc.sagemath.org/html/en/tutorial/tour_plotting.html# Use plot3d to graph a function of the form z=f(x,y)x,y=var('x,y')plot3d(x^2+y^2,(x,-2,2),(y,-2,2))
3D rendering not yet implemented
# Alternatively, you can use parametric_plot3d to graph a parametric surface where each of x,y,z is determined # by a function of one or two variables (the parameters, typically u and v). The previous plot can be expressed # parametrically as follows:u,v=var('u, v')f_x(u,v)=uf_y(u,v)=vf_z(u,v)=u^2+v^2parametric_plot3d([f_x,f_y,f_z],(u,-2,2),(v,-2,2))
3D rendering not yet implemented
# The third way to plot a 3D surface in Sage is implicit_plot3d, which graphs a contour of a function like # f(x,y,z)=0 (this defines a set of points). We graph a sphere using the classical formula:x,y,z=var('x, y, z')implicit_plot3d(x^2+y^2+z^2-4,(x,-2,2),(y,-2,2),(z,-2,2))
3D rendering not yet implemented
# Here are some more examples ... # (see Wikipedia for additional explanations of Whitney's umbrella, Cross cap, etc.)# Yellow Whitney’s umbrella:u,v=var('u,v')fx=u*vfy=ufz=v^2parametric_plot3d([fx,fy,fz],(u,-1,1),(v,-1,1),frame=False,color="yellow")# Cross cap:u,v=var('u,v')fx=(1+cos(v))*cos(u)fy=(1+cos(v))*sin(u)fz=-tanh((2/3)*(u-pi))*sin(v)parametric_plot3d([fx,fy,fz],(u,0,2*pi),(v,0,2*pi),frame=False,color="red")
3D rendering not yet implemented
3D rendering not yet implemented
# EXERCISE: plot your favorite surface!# The graph of a function is a parametric plot: f_x=x, f_y=y, f_z=z(x,y)# ...