if (!requireNamespace("ggplot2", quietly = TRUE)) {
install.packages("ggplot2", repos = "https://cloud.r-project.org")
}
library(ggplot2)
if (!requireNamespace("ggrepel", quietly = TRUE)) {
install.packages("ggrepel", repos = "https://cloud.r-project.org")
}
library(ggrepel)
if (!requireNamespace("viridis", quietly = TRUE)) {
install.packages("viridis", repos = "https://cloud.r-project.org")
}
biotech_markets <- data.frame(
application = c("Cell Therapy", "Drug Discovery", "Diagnostics", "Vaccines",
"Tissue Engineering", "Gene Therapy", "Biomanufacturing"),
market_size_billion_usd = c(15.2, 65.2, 45.1, 35.8, 8.9, 12.4, 28.7),
growth_rate_percent = c(12.5, 8.7, 6.9, 9.2, 15.2, 18.4, 11.3),
cell_based = c(TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE),
maturity = c("Emerging", "Mature", "Mature", "Mature", "Emerging", "Emerging", "Growing")
)
research_trends <- data.frame(
year = 2015:2024,
stem_cells = c(2500, 2800, 3200, 3800, 4200, 4800, 5200, 5800, 6200, 6800),
cancer_biology = c(8000, 8500, 9200, 9800, 10500, 11200, 11800, 12500, 13100, 13800),
gene_editing = c(800, 1200, 1800, 2800, 4200, 6000, 7200, 8500, 9800, 11000),
synthetic_biology = c(600, 800, 1100, 1500, 2000, 2600, 3200, 3900, 4800, 5500)
)
market_plot <- ggplot(biotech_markets, aes(x = market_size_billion_usd,
y = growth_rate_percent,
color = maturity,
size = market_size_billion_usd)) +
geom_point(alpha = 0.8) +
geom_text_repel(aes(label = application), size = 3) +
scale_color_viridis_d() +
labs(title = "Cell Biology Applications Market Analysis",
subtitle = "Market Size vs Growth Rate (2024)",
x = "Market Size (Billion USD)",
y = "Annual Growth Rate (%)",
color = "Market Maturity",
size = "Market Size") +
theme_minimal() +
guides(size = "none") +
geom_hline(yintercept = 10, linetype = "dashed", alpha = 0.5) +
annotate("text", x = 60, y = 10.5, label = "High growth threshold", size = 3)
print(market_plot)
research_long <- data.frame(
year = rep(research_trends$year, 4),
publications = c(research_trends$stem_cells, research_trends$cancer_biology,
research_trends$gene_editing, research_trends$synthetic_biology),
field = rep(c("Stem Cells", "Cancer Biology", "Gene Editing", "Synthetic Biology"),
each = length(research_trends$year))
)
research_plot <- ggplot(research_long, aes(x = year, y = publications, color = field)) +
geom_line(size = 1.2) +
geom_point(size = 2) +
scale_color_viridis_d() +
scale_x_continuous(breaks = seq(2015, 2024, 2)) +
labs(title = "Research Publication Trends in Cell Biology",
subtitle = "Annual Publications by Field (2015-2024)",
x = "Year",
y = "Number of Publications",
color = "Research Field") +
theme_minimal() +
theme(legend.position = "bottom")
print(research_plot)
therapy_milestones <- data.frame(
year = c(1990, 1995, 2003, 2012, 2017, 2020, 2024),
milestone = c("First gene therapy", "Stem cell discovery", "Human genome",
"iPSC therapies", "CAR-T approval", "COVID vaccines", "CRISPR therapies"),
impact = c(6, 8, 9, 8, 9, 10, 9),
category = c("Gene", "Stem Cell", "Genomics", "Stem Cell", "Immune", "Vaccine", "Gene")
)
timeline_plot <- ggplot(therapy_milestones, aes(x = year, y = impact, color = category)) +
geom_point(size = 4, alpha = 0.8) +
geom_line(aes(group = 1), alpha = 0.4, size = 1) +
geom_text_repel(aes(label = milestone), size = 3) +
scale_x_continuous(breaks = seq(1990, 2025, 5)) +
scale_y_continuous(breaks = 1:10) +
scale_color_viridis_d() +
labs(title = "Cell-Based Therapy Milestones",
subtitle = "Major Breakthroughs in Clinical Applications (1990-2024)",
x = "Year",
y = "Clinical Impact (1-10)",
color = "Therapy Type") +
theme_minimal()
print(timeline_plot)
cat("\n=== Cell Biology Applications Analysis ===\n")
total_market <- sum(biotech_markets$market_size_billion_usd)
cell_based_market <- sum(biotech_markets[biotech_markets$cell_based, "market_size_billion_usd"])
cell_based_percentage <- (cell_based_market / total_market) * 100
cat("Biotechnology market insights:\n")
cat(" Total market size:", total_market, "billion USD\n")
cat(" Cell-based applications:", round(cell_based_percentage, 1), "%\n")
fastest_growing <- biotech_markets[which.max(biotech_markets$growth_rate_percent), ]
largest_market <- biotech_markets[which.max(biotech_markets$market_size_billion_usd), ]
cat(" Fastest growing:", fastest_growing$application,
"(", fastest_growing$growth_rate_percent, "%/year)\n")
cat(" Largest market:", largest_market$application,
"(", largest_market$market_size_billion_usd, "billion USD)\n")
cat("\nResearch publication growth (2015-2024):\n")
fields <- c("stem_cells", "cancer_biology", "gene_editing", "synthetic_biology")
field_names <- c("Stem Cells", "Cancer Biology", "Gene Editing", "Synthetic Biology")
for(i in 1:length(fields)) {
initial <- research_trends[[fields[i]]][1]
final <- research_trends[[fields[i]]][length(research_trends[[fields[i]]])]
growth_factor <- final / initial
cat(sprintf(" %s: %.1f× increase (%d to %d publications)\n",
field_names[i], growth_factor, initial, final))
}
cat("\nTherapy development timeline:\n")
timeline_span <- max(therapy_milestones$year) - min(therapy_milestones$year)
avg_impact <- mean(therapy_milestones$impact)
cat(" Development span:", timeline_span, "years\n")
cat(" Average clinical impact:", round(avg_impact, 1), "/10\n")
high_impact <- therapy_milestones[therapy_milestones$impact >= 9, ]
cat(" Major breakthroughs (impact ≥ 9):\n")
for(i in 1:nrow(high_impact)) {
cat(" ", high_impact$year[i], ":", high_impact$milestone[i], "\n")
}