Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

kevinlui's site

7239 views
1
\documentclass[addpoints]{exam}
2
\usepackage{amsmath}
3
\usepackage{amsfonts}
4
5
\newcommand{\rank}{\mathrm{rank}}
6
\newcommand{\nullity}{\mathrm{nullity}}
7
\newcommand{\spn}{\mathrm{span}}
8
\newcommand{\col}{\mathrm{col}}
9
\newcommand{\row}{\mathrm{row}}
10
\newcommand{\nll}{\mathrm{null}}
11
12
% \printanswers
13
14
\pagestyle{headandfoot}
15
\runningheadrule
16
\firstpageheader{}{}{}
17
\runningheader{Math 308L Autumn 2017}
18
{Midterm 2, Page \thepage\ of \numpages}
19
{November 15, 2017}
20
\firstpagefooter{}{\thepage}{}
21
\runningfooter{}{\thepage}{}
22
23
\begin{document}
24
25
\begin{center}
26
Math 308L - Autumn 2017
27
28
Midterm 2
29
30
November 15, 2017
31
\end{center}
32
33
\ifprintanswers
34
\textbf{\huge KEY}
35
\else
36
Name: \hrulefill
37
38
Student ID Number: \hrulefill
39
\fi
40
41
\vspace{0.3cm}
42
43
\begin{center}
44
\gradetable[v][questions]
45
\end{center}
46
47
\vspace{0.3cm}
48
49
\begin{itemize}
50
\item
51
There are 5 problems on this exam. Be sure you have all 5 problems on
52
your exam.
53
\item
54
The final answer must be left in exact form. Box your final answer.
55
\item
56
You are allowed the TI-30XIIS calculator. It is possible to complete
57
the exam without a calculator.
58
\item
59
You are allowed a single sheet of 2-sided handwritten self-written notes.
60
\item
61
You must show your work to receive full credit. A correct answer
62
with no supporting work will receive a zero.
63
\item
64
Use the backsides if you need extra space. Make a note of this if you
65
do.
66
\item
67
Do not cheat. This exam should represent your own work. If you are
68
caught cheating, I will report you to the Community Standards and
69
Student Conduct office.
70
\end{itemize}
71
72
\textbf{Conventions}:
73
\begin{itemize}
74
\item
75
I will often denote the zero vector by $0$.
76
\item
77
When I define a variable, it is defined for that whole question. The $A$
78
defined in Question 1 is the same for each part.
79
\item
80
I often use $x$ to denote the vector $(x_1,x_2,\ldots,x_n)$. It should be clear from context.
81
\item
82
Sometimes I write vectors as a row and sometimes as a column. The
83
following are the same to me.
84
\[
85
(1,2,3) \quad
86
\begin{bmatrix}
87
1 \\
88
2 \\
89
3
90
\end{bmatrix}.
91
\]
92
\item
93
I write the evaluation of linear transforms in a few ways. The
94
following are the same to me.
95
\[
96
T(1,2,3) \quad T((1,2,3)) \quad T \left(
97
\begin{bmatrix}
98
1 \\ 2\\ 3
99
\end{bmatrix}
100
\right)
101
\]
102
\end{itemize}
103
104
105
\newpage
106
107
\begin{questions}
108
109
\question
110
Answer the following parts:
111
\begin{parts}
112
\part[6]
113
Let
114
\[
115
A=
116
\begin{bmatrix}
117
1 & 3 & 2 \\
118
0 & 1 & 1 \\
119
0 & 0 & 3
120
\end{bmatrix}.
121
\]
122
\begin{subparts}
123
\subpart
124
What is $A^{-1}$?
125
\vfill
126
\vfill
127
\subpart
128
What is $\det(2\cdot A^{-1})$?
129
\vfill
130
\end{subparts}
131
\part[6]
132
(Tricky.) Let
133
\[
134
B=
135
\begin{bmatrix}
136
1 & 1 & 11 \\
137
-1 & 0 & 15 \\
138
1 & 2 & 2017
139
\end{bmatrix},
140
\quad
141
y=
142
\begin{bmatrix}
143
1 \\ -2 \\ 0
144
\end{bmatrix}.
145
\]
146
It turns out that $y$ is in the span of the first and second column of
147
$B$ and $B$ is invertible. What is $B^{-1}y$? (Hint: Despite
148
appearances, this is a quick computation.)
149
\vfill
150
\vfill
151
\vfill
152
\end{parts}
153
154
\newpage
155
156
\question
157
Give an example of each of the following. If it is not possible, write
158
``NOT POSSIBLE''.
159
\begin{parts}
160
\part[3]
161
Give an example of 2 linear transforms $T:\mathbb{R}^3\to \mathbb{R}^2$
162
and $S:\mathbb{R}^2\to\mathbb{R}^3$ such that $T\circ
163
S:\mathbb{R}^2\to\mathbb{R}^2$ is invertible.
164
\vfill
165
\part[3]
166
Give an example of a basis for $\mathbb{R}^3$ such that every basis
167
element lies in the plane $x+y+z=0$.
168
\vfill
169
\part[3]
170
Give an example of two different matrices $A$ and $B$ such that
171
$\col(A)=\col(B)$ and $\nll(A)=\nll(B)$.
172
\vfill
173
\part[3]
174
Give an example of two $2\times 2$ matrices $A$ and $B$ such that
175
$\det(A + B) \neq \det(A) + \det(B)$.
176
\vfill
177
\end{parts}
178
179
\newpage
180
181
\question
182
Let $v=(1,1,-1)$ and $L_v=\spn(\{v\})$. Let $T:\mathbb{R}^3\to\mathbb{R}^3$
183
be the linear transform that is the projection onto $L_v$. This tells us 2
184
things about $T$:
185
\begin{itemize}
186
\item
187
$T(x)=x$ if $x\in L_v$,
188
\item
189
$T(x)=0$ if $x$ is orthogonal to $v$ (so if $x\cdot v=0$).
190
\end{itemize}
191
There exists a matrix $A$ such that $T(x)=Ax$. The goal of this problem is
192
to determine $A$.
193
194
\begin{parts}
195
\part[4]
196
Give a basis for $\mathbb{R}^3$ that contains $v$ and 2 vectors
197
orthogonal to $v$. (Hint: Recall that $(a_1,a_2,a_3)\cdot
198
(b_1,b_2,b_3)=a_1b_1+a_2b_2+a_3b_3$.)
199
\vfill
200
\vfill
201
\part[4]
202
Answer the following questions about $A$.
203
\begin{subparts}
204
\subpart
205
Give a basis for $\nll(A)$.
206
\vfill
207
\subpart
208
Give a basis for $\col(A)$.
209
\vfill
210
\subpart
211
What is the rank of $A$?
212
\vfill
213
\subpart
214
What is $\det(A)$?
215
\vfill
216
\end{subparts}
217
\part[4]
218
What is $A$? You may express $A$ as a product of matrices and their inverses.
219
\vfill
220
\vfill
221
\vfill
222
\vfill
223
\end{parts}
224
225
\newpage
226
227
\question
228
Let $T:\mathbb{R}^4 \to \mathbb{R}^3$ be the linear transform defined by
229
$T(x)=Ax$, where $A$ and its reduced echelon form are defined as follows:
230
\[
231
A=
232
\begin{bmatrix}
233
1 & 2 & -1 & -3 \\
234
2 & 4 & 0 & -4 \\
235
3 & 6 & -1 & -7
236
\end{bmatrix}
237
\sim
238
\begin{bmatrix}
239
1 & 2 & 0 & -2 \\
240
0 & 0 & 1 & 1 \\
241
0 & 0 & 0 & 0
242
\end{bmatrix}
243
= B.
244
\]
245
To save time when writing the solutions, let's denote the columns of $A$ by
246
$a_1,a_2,a_3,a_4$.
247
\begin{parts}
248
\part[3]
249
What is a basis for $\row(A)$?
250
\vfill
251
\part[3]
252
What a basis for the range of $T$?
253
\vfill
254
\part[3]
255
Write the columns of $A$ corresponding to free variables as a linear
256
combination of pivot columns of $A$.
257
\vfill
258
\part[3]
259
What is a basis for $\ker(T)$?
260
\vfill
261
\end{parts}
262
263
\newpage
264
265
\question
266
Let $A$ and $B$ be equivalent matrices given by
267
\[
268
A =
269
\begin{bmatrix}
270
2 & 4 & -1 & -2 \\
271
-1 & -3 & -1 & 0 \\
272
1 & 1 & 2 & 2 \\
273
2 & 6 & 2 & 0
274
\end{bmatrix}
275
\sim
276
\begin{bmatrix}
277
1 & 0 & 0 & 1/2 \\
278
0 & 1 & 0 & -1/2 \\
279
0 & 0 & 1 & 1 \\
280
0 & 0 & 0 & 0
281
\end{bmatrix}
282
= B.
283
\]
284
Let $a_1,a_2,a_3,a_4$ be the columns of $A$. Let $S=\spn(\{a_1,a_2\})$ and
285
$T=\spn(\{a_3,a_4\})$.
286
\begin{parts}
287
\part[2]
288
What is $\dim(\spn(\{a_1,a_2,a_3,a_4\}))$?
289
\vfill
290
\part[2]
291
What is a basis for $\nll(A)$?
292
\vfill
293
\part[2]
294
Denote that intersection of $S$ and $T$ by $S\cap T$. This is the
295
subspace of vectors that are in $\spn(\{a_1,a_2\})$ \textbf{and} in
296
$\spn(\{a_3,a_4\})$. What is $\dim(S\cap T)$?
297
\vfill
298
\part[6]
299
(Hard.) What is a basis for $S\cap T$?
300
\vfill
301
\vfill
302
\vfill
303
\end{parts}
304
305
\end{questions}
306
307
\end{document}
308
309