kevinlui's site
\documentclass[addpoints]{exam}1\usepackage{amsmath}2\usepackage{amsfonts}34\newcommand{\rank}{\mathrm{rank}}5\newcommand{\nullity}{\mathrm{nullity}}6\newcommand{\spn}{\mathrm{span}}7\newcommand{\col}{\mathrm{col}}8\newcommand{\row}{\mathrm{row}}9\newcommand{\nll}{\mathrm{null}}1011% \printanswers1213\pagestyle{headandfoot}14\runningheadrule15\firstpageheader{}{}{}16\runningheader{Math 308L Autumn 2017}17{Midterm 2, Page \thepage\ of \numpages}18{November 15, 2017}19\firstpagefooter{}{\thepage}{}20\runningfooter{}{\thepage}{}2122\begin{document}2324\begin{center}25Math 308L - Autumn 20172627Midterm 22829November 15, 201730\end{center}3132\ifprintanswers33\textbf{\huge KEY}34\else35Name: \hrulefill3637Student ID Number: \hrulefill38\fi3940\vspace{0.3cm}4142\begin{center}43\gradetable[v][questions]44\end{center}4546\vspace{0.3cm}4748\begin{itemize}49\item50There are 5 problems on this exam. Be sure you have all 5 problems on51your exam.52\item53The final answer must be left in exact form. Box your final answer.54\item55You are allowed the TI-30XIIS calculator. It is possible to complete56the exam without a calculator.57\item58You are allowed a single sheet of 2-sided handwritten self-written notes.59\item60You must show your work to receive full credit. A correct answer61with no supporting work will receive a zero.62\item63Use the backsides if you need extra space. Make a note of this if you64do.65\item66Do not cheat. This exam should represent your own work. If you are67caught cheating, I will report you to the Community Standards and68Student Conduct office.69\end{itemize}7071\textbf{Conventions}:72\begin{itemize}73\item74I will often denote the zero vector by $0$.75\item76When I define a variable, it is defined for that whole question. The $A$77defined in Question 1 is the same for each part.78\item79I often use $x$ to denote the vector $(x_1,x_2,\ldots,x_n)$. It should be clear from context.80\item81Sometimes I write vectors as a row and sometimes as a column. The82following are the same to me.83\[84(1,2,3) \quad85\begin{bmatrix}861 \\872 \\88389\end{bmatrix}.90\]91\item92I write the evaluation of linear transforms in a few ways. The93following are the same to me.94\[95T(1,2,3) \quad T((1,2,3)) \quad T \left(96\begin{bmatrix}971 \\ 2\\ 398\end{bmatrix}99\right)100\]101\end{itemize}102103104\newpage105106\begin{questions}107108\question109Answer the following parts:110\begin{parts}111\part[6]112Let113\[114A=115\begin{bmatrix}1161 & 3 & 2 \\1170 & 1 & 1 \\1180 & 0 & 3119\end{bmatrix}.120\]121\begin{subparts}122\subpart123What is $A^{-1}$?124\vfill125\vfill126\subpart127What is $\det(2\cdot A^{-1})$?128\vfill129\end{subparts}130\part[6]131(Tricky.) Let132\[133B=134\begin{bmatrix}1351 & 1 & 11 \\136-1 & 0 & 15 \\1371 & 2 & 2017138\end{bmatrix},139\quad140y=141\begin{bmatrix}1421 \\ -2 \\ 0143\end{bmatrix}.144\]145It turns out that $y$ is in the span of the first and second column of146$B$ and $B$ is invertible. What is $B^{-1}y$? (Hint: Despite147appearances, this is a quick computation.)148\vfill149\vfill150\vfill151\end{parts}152153\newpage154155\question156Give an example of each of the following. If it is not possible, write157``NOT POSSIBLE''.158\begin{parts}159\part[3]160Give an example of 2 linear transforms $T:\mathbb{R}^3\to \mathbb{R}^2$161and $S:\mathbb{R}^2\to\mathbb{R}^3$ such that $T\circ162S:\mathbb{R}^2\to\mathbb{R}^2$ is invertible.163\vfill164\part[3]165Give an example of a basis for $\mathbb{R}^3$ such that every basis166element lies in the plane $x+y+z=0$.167\vfill168\part[3]169Give an example of two different matrices $A$ and $B$ such that170$\col(A)=\col(B)$ and $\nll(A)=\nll(B)$.171\vfill172\part[3]173Give an example of two $2\times 2$ matrices $A$ and $B$ such that174$\det(A + B) \neq \det(A) + \det(B)$.175\vfill176\end{parts}177178\newpage179180\question181Let $v=(1,1,-1)$ and $L_v=\spn(\{v\})$. Let $T:\mathbb{R}^3\to\mathbb{R}^3$182be the linear transform that is the projection onto $L_v$. This tells us 2183things about $T$:184\begin{itemize}185\item186$T(x)=x$ if $x\in L_v$,187\item188$T(x)=0$ if $x$ is orthogonal to $v$ (so if $x\cdot v=0$).189\end{itemize}190There exists a matrix $A$ such that $T(x)=Ax$. The goal of this problem is191to determine $A$.192193\begin{parts}194\part[4]195Give a basis for $\mathbb{R}^3$ that contains $v$ and 2 vectors196orthogonal to $v$. (Hint: Recall that $(a_1,a_2,a_3)\cdot197(b_1,b_2,b_3)=a_1b_1+a_2b_2+a_3b_3$.)198\vfill199\vfill200\part[4]201Answer the following questions about $A$.202\begin{subparts}203\subpart204Give a basis for $\nll(A)$.205\vfill206\subpart207Give a basis for $\col(A)$.208\vfill209\subpart210What is the rank of $A$?211\vfill212\subpart213What is $\det(A)$?214\vfill215\end{subparts}216\part[4]217What is $A$? You may express $A$ as a product of matrices and their inverses.218\vfill219\vfill220\vfill221\vfill222\end{parts}223224\newpage225226\question227Let $T:\mathbb{R}^4 \to \mathbb{R}^3$ be the linear transform defined by228$T(x)=Ax$, where $A$ and its reduced echelon form are defined as follows:229\[230A=231\begin{bmatrix}2321 & 2 & -1 & -3 \\2332 & 4 & 0 & -4 \\2343 & 6 & -1 & -7235\end{bmatrix}236\sim237\begin{bmatrix}2381 & 2 & 0 & -2 \\2390 & 0 & 1 & 1 \\2400 & 0 & 0 & 0241\end{bmatrix}242= B.243\]244To save time when writing the solutions, let's denote the columns of $A$ by245$a_1,a_2,a_3,a_4$.246\begin{parts}247\part[3]248What is a basis for $\row(A)$?249\vfill250\part[3]251What a basis for the range of $T$?252\vfill253\part[3]254Write the columns of $A$ corresponding to free variables as a linear255combination of pivot columns of $A$.256\vfill257\part[3]258What is a basis for $\ker(T)$?259\vfill260\end{parts}261262\newpage263264\question265Let $A$ and $B$ be equivalent matrices given by266\[267A =268\begin{bmatrix}2692 & 4 & -1 & -2 \\270-1 & -3 & -1 & 0 \\2711 & 1 & 2 & 2 \\2722 & 6 & 2 & 0273\end{bmatrix}274\sim275\begin{bmatrix}2761 & 0 & 0 & 1/2 \\2770 & 1 & 0 & -1/2 \\2780 & 0 & 1 & 1 \\2790 & 0 & 0 & 0280\end{bmatrix}281= B.282\]283Let $a_1,a_2,a_3,a_4$ be the columns of $A$. Let $S=\spn(\{a_1,a_2\})$ and284$T=\spn(\{a_3,a_4\})$.285\begin{parts}286\part[2]287What is $\dim(\spn(\{a_1,a_2,a_3,a_4\}))$?288\vfill289\part[2]290What is a basis for $\nll(A)$?291\vfill292\part[2]293Denote that intersection of $S$ and $T$ by $S\cap T$. This is the294subspace of vectors that are in $\spn(\{a_1,a_2\})$ \textbf{and} in295$\spn(\{a_3,a_4\})$. What is $\dim(S\cap T)$?296\vfill297\part[6]298(Hard.) What is a basis for $S\cap T$?299\vfill300\vfill301\vfill302\end{parts}303304\end{questions}305306\end{document}307308309